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Abstract—This paper focuses on the problem of Differentially
Private Stochastic Optimization for (multi-layer) fully connected
neural networks with a single output node. In the first part,
we examine cases with no hidden nodes, specifically focusing
on Generalized Linear Models (GLMs). We investigate the well-
specific model where the random noise possesses a zero mean, and
the link function is both bounded and Lipschitz continuous. We
propose several algorithms and our analysis demonstrates the
feasibility of achieving an excess population risk that remains
invariant to the data dimension. We also delve into the scenario
involving the ReLU link function, and our findings mirror those
of the bounded link function. We conclude this section by
contrasting well-specified and misspecified models, using ReLU
regression as a representative example.

In the second part of the paper, we extend our ideas to two-
layer neural networks with sigmoid or ReLU activation functions
in the well-specified model. In the third part, we study the
theoretical guarantees of DP-SGD in Abadi et al. (2016) for
fully connected multi-layer neural networks. By utilizing recent
advances in Neural Tangent Kernel theory, we provide the first
excess population risk when both the sample size and the width
of the network are sufficiently large. Additionally, we discuss the
role of some parameters in DP-SGD regarding their utility, both
theoretically and empirically.

Index Terms—differential privacy, non-convex learning, DP-
ERM

I. INTRODUCTION

In the domain of machine learning, extracting knowledge
from data harboring sensitive attributes is an evolving concern.
Such a task mandates algorithms that can proficiently interpret
the data while upholding established privacy benchmarks.
Differential privacy (DP) [1], in this context, has gained
traction as a seminal framework for statistical data protection.
Recognized widely in contemporary research, DP ensures that
individual data remains non-retrievable post-analysis, offering
a robust defense mechanism against privacy infractions. This
underscores a burgeoning interest in devising learning archi-
tectures where DP considerations are intrinsically woven into
the analytic process.

Stochastic Optimization (SO) and its empirical form, Em-
pirical Risk Minimization (ERM), are the most fundamental
models in machine learning and statistics. They have numerous
applications in fields such as medicine, finance, genomics,
and social science. However, these applications often involve
sensitive data, making it essential to design differentially
private algorithms for SO and ERM, corresponding to the
problems of DP-SO and DP-ERM, respectively. While DP-
SO and DP-ERM have been extensively studied for more than

a decade, most of the existing work considers the case where
the loss function is convex. The problem of DP-SO and DP-
ERM with non-convex loss functions remains far from well-
understood due to their complex nature. Although there is
some preliminary work, such as [2]–[5], there are still two
critical issues. Firstly, most of the existing work adopts the
gradient norm of the population risk function to measure the
utility, which is quite different from the convex case where
we use the excess population risk instead. However, using
the gradient norm is inadequate for indicating how close
the private model is to the optimal solution [6]. Secondly,
while recently there has been some work considering the
excess population risk for non-convex loss functions [3],
most research has narrowly focused on general non-convex
loss functions, overlooking the intricacies of neural network
structures. To address these issues, this paper provides the first
comprehensive and theoretical study of DP Fully Connected
Neural Networks (with a single output node) and presents
several bounds of excess population risk. Specifically, our
contributions can be summarized as follows:

1) In the first part of the paper, we focus on the sim-
plest neural network structure: neural networks without
hidden nodes, aptly referred to as non-convex Gen-
eralized Linear Models (GLMs). We first address the
well-specified model that is characterized by zero-mean
random noise, combined with bounded and Lipschitz
link functions. For this setup, we introduce an (ϵ, δ)-DP
algorithm and demonstrate its efficacy with an output
upper bound Õ( 1√

n
+ min{ 1

(nϵ)
2
3
,
√
θ

nϵ }). Here θ is an

upper bound on the expected rank of the data matrix
and n is the sample size. We then broaden our study
to cases with unbounded link functions, specifically
when employing the ReLU activation function. In this
scenario, we establish that an upper bound of Õ( 1√

n
+

min{
√
d

nϵ ,
1

(nϵ)
2
3
}) is feasible. Subsequently, our atten-

tion pivots to the misspecified model. To delineate its
nuances vis-à-vis the well-specified model, we spotlight
the ReLU activation function as a representative case.
Within this scope, we innovate a distinct version of DP
Gradient Descent, showcasing a sample complexity of
Õ(max{

√
d

ϵα ,
d
α2 }). This sample complexity guarantees

that the difference between the population risk of our
private estimator and c · opt is no more than α, where
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opt is the optimal value of population risk and c > 0 is
some constant.

2) Next, we extend our ideas to the problem of privately
learning two-layer neural networks. Specifically, we
consider the well-specified model and study the cases
where the activation functions are either sigmoid or
ReLU. Our main contribution is to establish the sample
complexity required to achieve an error of α for excess
population risk. For the sigmoid case, we show that the
sample complexity is O((kC1

α )2C1 1
ϵ2 ), where k is the

number of hidden nodes and C1 is a positive constant.
For the ReLU case with k hidden nodes, we show that
the sample complexity is O(4C2

k
α

1
ϵ2 ), where C2 is a

positive constant.
3) In the last part, we consider general multi-layer fully

connected neural networks. Rather than introducing new
methods, we delve into the theoretical guarantees of the
standard DP-SGD as detailed in [7]. Drawing upon re-
cent advancements in the Neural Tangent Kernel (NTK),
we present the inaugural excess population risk bound
for networks where both the width of each layer and the
sample size are sufficiently large. In essence, this bound
is composed of three elements: an approximation error
attributable to NTK, an error arising from the Gaussian
noise introduced in every iteration, and a combined term
representing the convergence rate and sampling error.
Building on our theoretical framework, we then delve
into the intricate interplay and trade-offs between vari-
ous parameters. We also provide experimental studies to
corroborate our theoretical findings.

Due to the space limit, some additional sections and all
omitted proofs are included in Appendix.

II. RELATED WORK

As we mentioned earlier, there is a long list of work on DP-
SO and DP-ERM. Thus, here we only mention the theoretical
work that is close to ours.
Private non-convex learning. In DP-SCO/DP-ERM with
convex loss functions, the excess population risk is commonly
used to measure the utility. However, in the non-convex case,
there are three general ways to measure the utility. The
first approach is based on the first-order stationary condition,
such as the gradient ℓ2-norm of the population risk function
[2], [5], [8]–[11]. However, there are some issues with this
measure. Firstly, previous work has shown that the gradient
norm tends to 0 as the sample size n goes to infinity, but
there is no guarantee that such a private estimator will be
close to any non-degenerate local minimum [6]. Secondly,
the gradient-norm estimator is not always consistent with the
excess empirical (population) risk of the loss function [3].

The second approach considers using the second-order sta-
tionary condition as the measure, which involves considering
both the norm of the gradient and the Hessian matrix minimal
eigenvalue of the population risk function [3], [12]. The
motivation for this approach is based on the fact that for
many machine learning problems, such as matrix completion

and dictionary learning, any second-order stationary point is a
local minimum of the problem, and all the local minima are the
global minimum. Thus, finding a global minimum is equivalent
to finding a second-order stationary point. However, the main
disadvantage of this measure is that it is only reasonable for
some problems, and it is unknown whether general neural
networks satisfy the above property.

The third approach is to directly use the excess population
risk, which is similar to the convex case, and our work is
along with this direction. However, most of the previous work
only considers some specific class of loss functions, such as
Polyak-Lojasiewicz loss [13]. [3] provided the first study of
DP-ERM with general non-convex loss, but their bound is
O( d

(logn)ϵ ), which is quite large. Compared to their results,
our work considers general neural networks and provides
improved bounds.
DP-GLM. DP-SO/DP-ERM with Generalized Linear loss
(DP-GLL) and DP-GLM have received considerable attention
in recent years. For convex loss functions, [14] provided the
first study on DP-GLL and showed that in the unconstrained
case, the error bound can achieve Õ( 1√

nϵ
) in general, which

is quite different from the bound O(
√
d

nϵ ) for general convex
DP-ERM. Later, [15] studied the same problem and showed
that in the constrained case, the error bound could only
depend on the Gaussian width of the underlying constraint
set. For the unconstrained setting, [5] showed an improved
bound of O(

√
θ

nϵ ), where θ is the rank of the expectation
of the data matrix. For constrained DP-GLM, [9] considered
various settings where the loss could be smooth/non-smooth
and in the ℓp space for general 1 ≤ p ≤ 2. Recently, [16]
studied the optimal rates of DP-GLM in the unconstrained
setting. Specifically, when the loss is smooth and non-negative
but not necessarily Lipschitz, it showed the optimal rate of
Õ( 1√

n
+ min{ 1

(nϵ)2/3
,
√
d

nϵ }). When the loss is Lipschitz, the

optimal rate is Õ( 1√
n

+ min{ 1√
nϵ
,
√
θ

nϵ }). For non-convex
losses, [5], [9] provided bounds that are independent of the
dimension for the gradient ℓ2-norm of the population risk
function. [3], [17] studied the excess population risk for some
specific GLMs and showed that their bound can be only
logarithmic in the dimension. However, they need to assume
the constraint set is an ℓ1-norm ball, while our work does not
require such an assumption.

III. PRELIMINARIES

Definition 1 (Differential Privacy [1]). Given a data universe
X , we say that two datasets D,D′ ⊆ X are neighbors if they
differ by only one data record, which is denoted as D ∼ D′.
A randomized algorithm A is (ϵ, δ)-differentially private (DP)
if for all neighboring datasets D,D′ and for all events S in
the output space of A, we have

Pr(A(D) ∈ S) ≤ eϵPr(A(D′) ∈ S) + δ.

Lemma 1 (Gaussian Mechanism). Given any function q :
Xn → Rd, the Gaussian mechanism is defined as q(D) + ξ



where ξ ∼ N (0,
2∆2

2(q) log(1.25/δ)
ϵ2 Id), where ∆2(q) is the ℓ2-

sensitivity of the function q, i.e., ∆2(q) = supD∼D′ ||q(D)−
q(D′)||2. Gaussian mechanism preserves (ϵ, δ)-DP for 0 <
ϵ, δ < 1.

Definition 2 (DP-SO [18]). Given a dataset D = {z1, · · · , zn}
from a data universe Z where each zi = (xi, yi) with a feature
vector xi and a label/response yi is i.i.d. sampled from some
unknown distribution P , a convex constraint set W ⊆ Rd,
and a (non-convex) loss function ℓ : W × Z 7→ R. Differ-
entially Private Stochastic Optimization (DP-SO) is to find a
model wpriv to minimize the population risk, i.e., LP(w) =
E(x,y)∼P [ℓ(w;x, y)] with the guarantee of being differentially
private.1 The utility of wpriv is measured by the (expected) ex-
cess population risk ELP(w

priv)−minw∈W LP(w), where the
expectation takes over the randomness of the algorithm and the
input data. Besides the population risk, we can also measure
the empirical risk of dataset D: L̂(w,D) = 1

n

∑n
i=1 ℓ(w, zi).

It is notable that besides the error bound, to better demon-
strate our results, we may also consider the sample complexity
to achieve a fixed error α to measure the utility of DP
algorithms.

Definition 3. A function f(·) is G-Lipschitz if for all w,w′ ∈
W , |f(w)− f(w′)| ≤ G∥w − w′∥2.

Definition 4. A function f(·) is β-smooth on W if for all
w,w′ ∈ W , f(w′) ≤ f(w)+ ⟨∇f(w), w′−w⟩+ β

2 ∥w
′−w∥22.

Definition 5. A function f(·) is α-strongly convex on W if
for all w,w′ ∈ W , f(w′) ≥ f(w)+⟨∇f(w), w′−w⟩+ α

2 ∥w
′−

w∥22.

Definition 6. A random matrix Φ ∈ Rk×d satisfies (α, β)-
Johnson-Lindentrauss (JL) property if for any u, v ∈ Rd and
any α > 0 we have P[|⟨Φu,Φv⟩ − ⟨u, v⟩| > α∥u∥2∥v∥2] ≤
β, where the probability takes over the randomness of the
distribution of Φ.

Specifically, when R ∈ Rk×d is a random Gaussian matrix
with k = O( log 1/β

α2 ) each entry is i.i.d. sampled from N (0, 1).
Then the matrix A = 1√

k
R satisfies (α, β)-JL property.

IV. PRIVATE NON-CONVEX GLMS

A. Well-specified Model

1) Bounded Link Function Case: In this section, we will
examine the problem of Generalized Linear Models (GLMs),
which are neural networks without hidden layers and with a
single output neuron. Specifically, we will begin by consider-
ing a simplified scenario in which the statistical model is well-
specified,2 meaning that the Bayes optimal classifier satisfies
E[y|x] = σ(⟨w∗, x⟩) for some underlying parameter w∗ ∈ Rd
and non-convex link function σ:

y = σ(⟨w∗, x⟩) + ζ, (1)

1Note that in this paper, we consider the improper learning case, that is
wpriv may not be in W .

2In the literature, the well-specified setting is also extensively referred to
as the ”noisy teacher” setting [19] or the well-structured noise model [20]

where ζ is random noise with zero mean. In the following, we
will introduce several assumptions that will be used throughout
this section.

Assumption 1. Assume there exist constants W,G,B = O(1)
such that ∥w∗∥2 ≤W , y ∈ [−B,B] and the link function σ :
R 7→ [−B,B] is G-Lipschitz and non-monotone decreasing.
We also assume ∥x∥2 ≤ 1. 3

The assumption of ∥w∗∥2 ≤ W for a given known W
is a recurring theme in the literature on private learning and
statistical estimation. Notably, even in linear models where σ
serves as the identity function, this presumption consistently
appears in prior research [21], [22].

In fact, many activation functions that are commonly used
in neural networks satisfy Assumption 1, such as sigmoid
function σ(x) = 1

1+exp(−x) and tanh function σ(x) =
exp(x)−exp(−x)
exp(x)+exp(−x) .

Under the well-specified model (1), we consider the ex-
pected squared error as the population risk function, i.e.,
LP(w) = E(x,y)∼P(σ(⟨w, x⟩)− y)2.

To solve the problem, the most natural idea is to ap-
proximate the population function LP(w) by some convex
stochastic function. Motivated by [23], [24], here we consider
the following surrogate (convex) loss function:

ℓ(w;x, y) =

∫ ⟨w,x⟩

0

(σ(z)− y)dz. (2)

The following result shows that the loss ℓ is convex, Lipschitz
and smooth:

Lemma 2. Under Assumption 1, for any (x, y) ∼ P , function
ℓ(·;x, y) is convex and 2B-Lipschitz. Moreover, if σ has
(sub)gradient anywhere, then the rank of the Hessian matrix
for ℓ(·;x, y) is 1, and ℓ(·;x, y) is G-smooth.

Algorithm 1 DP non-convex GLM
Require: Private dataset: D = {(xi, yi)}ni=1, link function σ

satisfying Assumption 1 and has (sub)gradient anywhere;
privacy parameters 0 < ϵ, δ ≤ 1, upper bound θ of the
expected rank of data matrix.

1: If ϵ > θ
3
2

n , run Algorithm 2. Otherwise, run Algorithm 3.

In the following, we use the notations Lℓ(w;D) =
1
n

∑n
i=1 ℓ(w;xi, yi) and LℓP(w) = E[ℓ(w;x, y)] to represent

the empirical risk and population risk functions for the loss
ℓ in (2), respectively. The following lemma, given by [24],
shows that the optimal parameter w∗ is also the minimizer of
LℓP(·). Moreover, for any w, the excess population risk of w
is dominated by the excess population risk of loss ℓ(w;x, y).

Lemma 3. For any w ∈ Rd, we have LP(w) − LP(w
∗) ≤

2G(LℓP(w)− LℓP(w∗)).

3For simplicity, here we assume ∥x∥2 ≤ 1, and for the range of σ we use
the same B as the range of y, we can easily extend our results to general
cases.



Thus, motivated by Lemma 3, now we aim to find a private
estimator wpriv ∈ Rd to minimize LℓP(w). Moreover, we
can see from the form of the loss ℓ and Lemma 2 that if
σ has subgradient anywhere, then ℓ(·) will be a generalized
linear loss, i.e., ℓ(w;x, y) = g(⟨w, x⟩, y) where g(·, y) is
convex, 2B-Lipschitz, and G-smooth. Therefore, we can use
unconstrained DP-SO algorithms for convex generalized linear
loss to ℓ to obtain a private estimator. Here, we adopt the
Phased SGD method for convex GLM in [9] (see Algorithm
2 for details). Furthermore, motivated by [16], we propose
a new method that uses a JL matrix to preprocess the data
and then performs Algorithm 2 over the projected data. Note
that using Phased SGD is crucial for our analysis of two-layer
neural networks in later sections (see Remark 2 for details).
The entire algorithm is provided in Algorithm 1.

Algorithm 2 Phased SGD for non-convex GLM
Require: Private dataset: D = {(xi, yi)}ni=1, link function σ

satisfying Assumption 1 and has (sub)gradient anywhere;
privacy parameters 0 < ϵ, δ ≤ 1.

1: Denote the loss function ℓ as ℓ(w;x, y) =
∫ ⟨w,x⟩
0

(σ(z)−
y)dz.

2: Set k = ⌈log2(n)⌉, partite the whole dataset S into
k subsets {D1, · · · , Dk}. Denote ni as the number of
samples in Di, i.e., |Di| = ni where ni = ⌊2−in⌋. Take
a random initial vector w0 ∈ W .

3: for i = 1, · · · , k do
4: Let ηi = η

4i and w1
i = wi−1.

5: for t = 1, · · · , ni do
6: Update wt+1

i = wti − ηi∇ℓ(wti ;xti, yti) = wti −
ηi(σ(⟨wti , xti⟩) − yti)x

t
i, where (xti, y

t
i) is the t-th

sample of Di.
7: end for
8: Denote wi = w̄i + ζi, where w̄i = 1

ni

∑ni

t=1 w
t
i and

ζi ∼ N (0, τ2i Id) with τi =
8Bηi
√

log 1
δ

ϵ .
9: end for

In the following, we will show the utility. We denote θ as
the upper bound of ED∼Pn [Rank(V )], where V is a matrix
whose columns are an eigenbasis for

∑n
i=1 xix

T
i . Note that

we always have ED∼Pn [Rank(V )] ≤ n.

Theorem 1. Under Assumption 1 and if σ has (sub)gradient
anywhere, for any 0 < ϵ, δ < 1, Algorithm 2 is (ϵ, δ)-DP.
Moreover, when η = O(min{ ϵ√

θ log 1
δ

, 1√
n
}) ≤ 2

G , we have

ELP(wk)− LP(w
∗) ≤ O

( 1√
n
+

√
θ log 1

δ

nϵ

)
.

Theorem 2. Under Assumption 1 and if σ has (sub)gradient
everywhere, let m = O(log(n/δ)(nϵ)

2
3 ), then Algorithm 3

is (ϵ, δ)-DP for any 0 < ϵ, δ < 1
2G . Moreover, when η =

O(min{ ϵ√
m log 1

δ

, 1√
n
}) ≤ 1, we have

ELP(ŵ)− LP(w
∗) ≤ Õ

(√log 1
δ

(nϵ)
2
3

+
1√
n

)
,

Algorithm 3 DP-Projected Phased SGD for non-convex GLM
Require: Private dataset: D = {(xi, yi)}ni=1, link function σ

satisfying Assumption 1 and has (sub)gradient anywhere;
privacy parameters 0 < ϵ, δ ≤ 1.

1: Sample a JL matrix Φ ∈ Rm×d, and denote D̃ =
{(Φx1, y1), · · · , (Φxn, yn)}.

2: Run Algorithm 2 on the projected dataset D̃, i.e., in Line
6 of Algorithm 2, update

wt+1
i = wti − ηi(σ(⟨wti , x̃ti⟩)− yti)x̃ti,

where (x̃ti, y
t
i) is the t-th sample of D̃i. And in Line 8,

ζi ∼ N (0, τ2i Im) with τi =
16Bηi

√
log 2

δ

ϵ . Denote the
output as wk.

3: return ŵ = ΦTwk

where the Big-Õ notation omits the term of log(n/δ).

Remark 1. The output of Algorithm 1 achieves an error of
Õ(n−

1
2 +min {

√
θ(nϵ)−1, (nϵ)−

2
3 }). This rate appears to be

better than the lower bound for DP convex and Lipschitz
Generalized Linear loss (DP-GLL) [16], which is near-optimal
at O(n−

1
2 +min {

√
θ(nϵ)−1, (nϵ)−

1
2 }). However, these results

are not contradictory, as [16] considers a more general class
of loss functions. In fact, the above lower bound for DP-GLL
only holds for the case where LP(w) = E[|y−⟨w, x⟩|], while
our problem mainly focuses on the squared loss LP(w) =
E[(y−σ(⟨w, x⟩))2]. Therefore, the lower bound does not apply
to our problem.

Additionally, [16] considers the smooth and non-negative
generalized linear loss, which is not necessarily Lips-
chitz, and shows that the near-optimal rate is Õ(n−

1
2 +

min{(nϵ)− 2
3 ,
√
d(nϵ)−1}). Again, these results are not con-

tradictory to ours.

2) More General Link Functions: One issue with the
previous approach is that the link function σ should have a
subgradient everywhere so that the surrogate function ℓ(·;x, y)
is smooth by Lemma 2. However, unlike the convex case,
this assumption may not always hold since some non-convex
functions may have no subgradient at some point. We will
address this case and demonstrate that it is possible to achieve
the same bounds as in Theorem 1 and Theorem 2 (but with
higher time complexity).

Since the surrogate loss function in this case becomes non-
smooth, the issue lies in finding a method to make it smooth.
To illustrate our approach, we first recall the Moreau envelope
smoothing technique that can be used to make a non-smooth
function smooth [25]. Let M be a (potentially unbounded)
closed interval, y ∈ R and β > 0. Consider a function ℓ :
M 7→ R. The β-Moreau envelop of ℓ is defined as

ℓβ(x) = min
u∈M

[ℓ(u) +
β

2
|u− x|2].

Denote the proximal operator with respect to ℓ as

proxβℓ (x) = arg min
u∈M

[ℓ(u) +
β

2
|u−m|2].



If ℓ is a convex function, then its Moreau envelop has the
following properties:

Lemma 4. Let ℓ : M 7→ R be a convex function and G-
Lipschitz. Then the following hold: a) ℓβ is convex, 2G-
Lipschitz and β-smooth. b)ℓ′β(x) = β[x − proxβℓ (x)]. c) For
all x ∈M, ℓβ(x) ≤ ℓ(x) ≤ ℓβ(x) + G2

2β .

Note that the previous Moreau envelope is for one-
dimensional functions while our surrogate loss ℓ is d di-
mensional. Thus, for fixed (x, y), we denote gy(⟨x,w⟩) =
ℓ(w;x, y) in (2) and we calculate the Moreau envelop of gy(·)
instead, which is denoted as gyβ(·). By Lemma 4 and since ℓ
is Lipschitz and convex, we have gyβ is 2B-Lipschitz and β-
smooth. Thus, we have the following fact.

Lemma 5. For any fixed (x, y), denote ℓ(w;x, y) =
gy(⟨x,w⟩) and gyβ(·) as the Moreau envelop of gy(·) with
parameter β and M = R. Let fβ(w;x, y) = gyβ(⟨w, x⟩),
then we have fβ is 2B-Lipschitz, β-smooth and |fβ(w;x, y)−
ℓ(w;x, y)| ≤ 2B2

β for all w ∈ Rd.

Algorithm 4 Oβ,γ : Gradient Oracle for fβ(w;x, y)

Require: Parameter vector w ∈ Rd, data sample (x, y)
associate with gyβ(·).

1: Let m = ⟨w, x⟩ and Q = [m− 4B
β ,m+ 4B

β ].
2: Let T = 144B2

γ2 .
3: for t = 1, 2, · · · , T do
4: yt+1 = wt − ηt(σ(wt) − y + β(wt −m)) where ηt =

2
β(t+1) .

5: wt+1 = yt+1 if yt+1 ∈ Q, wt+1 = m − 4B
β if yt+1 <

m− 4B
β and wt+1 = m+ 4B

β otherwise.
6: end for
7: Denote w̄ =

∑T
t=1

2t
T (T+1)xt.

8: Return xβ[m− w̄].

One possible approach based on Lemma 5 is to obtain
a smooth loss function fβ(w;x, y), and then use Algo-
rithm 2 and Algorithm 3 to obtain private estimators that
achieve a small excess population risk for fβ(w;x, y), i.e.,
E[fβ(w;x, y)] − minw∈Rd E[fβ(w;x, y)]. However, there is
a challenge: To use Algorithm 2, we need to calculate the
gradient of fβ(w;x, y), which is inefficient as it is hard
to compute the proximal operator explicitly by Lemma 4.
In the convex GLM case, [9] used the bisection method to
calculate ∇fβ(w;x, y). However, this approach cannot be
used here as it requires access to the function gy(·), which
involves integration for our problem and is difficult to compute
accurately. In the following, we propose an algorithm that can
efficiently approximate ∇fβ(w;x, y).

The idea is that by our definition we have ∇fβ(w;x, y) =
xg′yβ (⟨w, x⟩), where g′yβ (m) = β[m − proxβg (m)]. Thus, it is
sufficient to approximate proxβℓ (x) for given x. Recall that by
the definition proxβg (m) = argminu∈R[g

y(u) + β
2 |u −m|

2].

We can show that proxβg (m) ∈ Q = [m− 4B
β ,m+ 4B

β ] which
indicates that

proxβg (m) = argmin
u∈Q

[gy(u) +
β

2
|u−m|2]

Thus, we can use the projected gradient descent (PGD) to solve
the above strongly convex objective function, see Algorithm
4 for details. By the convergence rate of PGD we have the
following lemma.

Lemma 6. Given any β, γ > 0. Then the gradient oracle Oβ,γ
for fβ(w;x, y) in Algorithm 4 satisfies that ∥∇fβ(w;x, y)−
Oβ,γ(w;x, y)∥2 ≤ γ for any fixed w, x, y. Moreover, Oβ,γ
has running time O(dB

2

γ2 ).

Algorithm 5 Phased SGD for general non-convex GLM
Require: Private dataset: D = {(xi, yi)}ni=1, link function

σ satisfies Assumption 1 and is differentiable; privacy
parameters 0 < ϵ, δ ≤ 1.

1: Set k = ⌈log2(n)⌉, partite the whole dataset S into
k subsets {D1, · · · , Dk}. Denote ni as the number of
samples in Di, i.e., |Di| = ni where ni = ⌊2−in⌋. Take
a random initial vector w0 ∈ W .

2: for i = 1, · · · , k do
3: Let ηi = η

4i and w1
i = wi−1.

4: for t = 1, · · · , ni do
5: Recall the oracle in Algorithm 4 for

fβ(w
t
i ;x

t
i, y

t
i) in Lemma 5 with error γ

and denote it as ∇̃fβ(wti ;xti, yti). Update
wt+1
i = wti − ηi∇̃fβ(wti ;xti, yti), where (xti, y

t
i)

is the t-th sample of Di.
6: end for
7: Denote wi = w̄i + ζi, where w̄i = 1

ni

∑ni

t=1 w
t
i and

ζi ∼ N (0, τ2i Id) with τi =
10BRηi

√
log 1

δ

ϵ .
8: end for

Algorithm 6 DP-Projected Phased SGD for general non-
convex GLM
Require: Private dataset: D = {(xi, yi)}ni=1, link function

σ satisfies Assumption 1 and is differentiable; privacy
parameters 0 < ϵ, δ ≤ 1.

1: Sample a fast JL matrix Φ ∈ Rm×d, and denote D̃ =
{(Φx1, y1), · · · , (Φxn, yn)}.

2: Run Algorithm 5 on the projected dataset D̃, where in

Line 8, ζi ∼ N (0, τ2i Im) with τi =
20Bηi

√
log 2

δ

ϵ and
replace B by 2B in Algorithm 4. Denote the output as
wk.

3: return ŵ = ΦTwk

Using the previous Lemma 6, one possible approach is
to use the approximate oracle in Algorithm 2, which is the
main idea behind Algorithm 5. However, there is another
issue: if we use the same proof as in the previous case
where the link function has a subgradient everywhere, we can



only obtain an upper bound that depends on ∥w∗
β∥2, where

w∗
β = argminw∈Rd E[fβ(w;x, y)]. This phenomenon has also

been observed in GLMs with convex and non-smooth loss
functions [9]. Fortunately, we can conduct a finer analysis of
the theoretical guarantee of Algorithm 2 and show that we can
obtain an upper bound that depends on W instead of ∥w∗

β∥2.
Similar to the above results, we have the following two results.

Theorem 3. Under Assumption 1, for any 0 < ϵ, δ ≤
1, Algorithm 5 is (ϵ, δ)-DP. Moreover, when η =
O(min{ ϵ√

θ log 1
δ

, 1√
n
}) ≤ 2

β , γ = O( 1
n logn ) and β = O(

√
n).

Then we have

ELP(wk)− LP(w
∗) ≤ O

(√θ log 1
δ

nϵ
+

1√
n

)
. (3)

Theorem 4. Under Assumption 1 and let
m = O(log(nδ )(nϵ)

2
3 ), Algorithm 6 is (ϵ, δ)-

DP for any 0 < ϵ, δ ≤ 1. Moreover, when
η = O(min{ ϵ√

m log 1
δ

, 1√
n
}) ≤ 1

β , γ = O(n log n) and

β = O(
√
n) then we have

ELP(wk)− LP(w
∗) ≤ Õ

( 1√
n
+

√
log 1

δ

(nϵ)
2
3

)
.

3) ReLU Link Function: In the previous sections, we fo-
cused on the case where the link function in model (1) satisfies
Assumption 1. Although this assumption includes several com-
monly used activation functions, it excludes the ReLU function
where σ(x) = max{0, x} due to the boundedness assumption
of σ. Here, we will consider the ReLU link function as it is
a standard activation function in neural networks.

Similar to Assumption 1, we still assume that ∥w∗∥2 ≤W ,
∥x∥2 ≤ 1, and y ∈ [−B,B]. Note that since ReLU is
Lipschitz, we can still use Lemma 3, and it is sufficient
to consider the problem of minimizing LℓP(w). However,
the main difficulty now is that the surrogate loss function
ℓ(w;x, y) is no longer Lipschitz over the whole space Rd,
as ∇ℓ(w;x, y) = (σ(⟨w, x⟩) − y)x is unbounded. Thus, our
above methods cannot be used for the ReLU case, as all of
them need to assume that ℓ(w;x, y) is Lipschitz over the whole
space. This is due to the fact that w̄ and wti in Algorithm 2
may not lie in the constraint set W .

To address the issue, we make the key observation that
although the surrogate loss function ℓ(w;x, y) is not Lipschitz
over the whole space, it will be Lipschitz over bounded
sets. Specifically, for any w with ∥w∥2 ≤ W , we have
∥∇ℓ(w;x, y)∥2 ≤ W + B. Based on this observation, we
propose to constrain w over a bounded domain during updates.
To achieve this, we adopt the DP version of projected gradient
descent (DP-PGD) introduced in [18], which adds noise to the
gradient and performs the projection operation after updating
the model, thereby enforcing w to be bounded during each
iteration. Building on Algorithm 3, we preprocess the data
with a JL matrix and project all feature vectors onto an m-
dimensional space before applying DP-PGD. Finally, we lift

the private estimator to the original space after the DP-PGD
algorithm. See Algorithm 7 for the full details.

Algorithm 7 DP-Projected GD for ReLU Regression
Require: Private dataset: D = {(xi, yi)}ni=1, ReLU link func-

tion σ(w) = max{0, w}; privacy parameters 0 < ϵ, δ ≤ 1.

1: Sample a JL matrix Φ ∈ Rm×d, and denote D̃ =
{(Φx1, y1), · · · , (Φxn, yn)}.

2: for t = 1, · · · , T do
3: Update w̃t+1 as w̃t+1 = ΠW̃ [w̃t −

η( 1n
∑n
i=1(max{0, ⟨w̃t,Φxi⟩} − yi)Φxi + ζt)],

where ζ ∼ N (0, σ2Im) with σ2 =
32(4W+B)2T log 2

δ

n2ϵ2 ,
W̃ = {w ∈ Rm|∥w∥2 ≤ 2W} and Π is the projection
operator.

4: end for
5: return w̄ =

∑T
t=1 ΦT w̃T

T .

Theorem 5. Algorithm 7 is (ϵ, δ)-DP for any 0 <
ϵ, δ ≤ 1 under the previous assumptions and m =
O(log(nδ )(nϵ)

2
3 ). Moreover, take η = O( 1√

T
) ≤ 1

2 and

T = O(min{n, n2ϵ2

m log 1/δ}), in Algorithm 7 we have

ELP(w̄)− LP(w
∗) ≤ Õ

( 1√
n
+

1
√

log 1/δ

(nϵ)
2
3

)
.

By combining the error bound of DP-PGD in [18]
with our analysis, we obtain a bound of Õ(n−

1
2 +

min{
√
d(nϵ)−1, (nϵ)−

2
3 }). This bound is worse than those

derived in the previous section because the ReLU link function
is not Lipschitz over Rd. It is worth noting that [16] also
employs DP-PGD for convex generalized linear loss and
obtains the same bound. However, their analysis assumes the
loss function to be non-negative, whereas our loss function ℓ
in (2) does not satisfy this assumption.

B. Misspecified Model

In previous sections, we focused on model (1) where
E[y|x] = σ(⟨w∗, x⟩). However, such an assumption is quite
strong. Instead of the well-specified model, we always en-
counter the misspecified one that does not directly impose
any probability condition on the label generating process. 4

Since the zero-mean random noise assumption does not hold,
we cannot apply Lemma 3, which transforms the original
population risk to the population risk of a convex surrogate
loss. As a result, none of the above methods can be used
in this case. A natural question is, what are the theoretical
behaviors of GLMs in the misspecified model?

In fact, even in the non-private case, the problem of GLMs
in the misspecified model is quite challenging and is still
not well understood in general. Thus, rather than considering
upper bounds for general loss functions, we aim to illustrate
the differences with the well-specified model by examining

4This setting is also known as the agnostic setting in literature [26], [27].



specific losses. In particular, we will study ReLU regression
in the misspecified model.

Similar to the previous section, we will still ex-
amine the squared population risk function LP(w) =
E(x,y)∼P(σ(⟨w, x⟩)−y)2. It is noteworthy that [28] shows that
in the absence of distributional assumptions on the marginal
distribution of x, i.e., Px, finding a parameter w such that
LP(w) ≤ O(LP(w

∗)) + α with some small error α is NP-
hard even in the non-private case. Therefore, compared to the
well-specified model, we need additional assumptions on Px,
and we will concentrate on the following isotropic log-concave
distributions, which include uniform distribution over [0, 1]d

and Bernoulli distribution.

Assumption 2. We assume the marginal distribution of x is
isotropic log-concave, i.e., EPx [x] = 0 and EPx [xx

T ] = Id,
and its density function f satisfies f(λx + (1 − λ)y) ≥
f(x)λf(y)1−λ for every x, y ∈ Supp(Px) and λ ∈ [0, 1].
Moreover, we assume ∥x∥2 ≤

√
d and y ∈ [−B,B].

To illustrate our idea, we first provide some notations. For
any function f : Rd 7→ R and distribution P for (x, y), we
denote χfP = Ex∼PX [f(x)x], χ

σw

P = Ex∼PX [σ(⟨w, x⟩)x] and
χP = EP [yx]. Our method is motivated by the following
observations. Firstly, we can show that if PX is isotropic, then
for any vector w the distance between χσw

P and χP is bounded
by

√
LP(w), i.e., ∥χσw

P − χP∥2 ≤
√
LP(w). Secondly, for

ReLU regression, there exists a constant µ > 0 such that
σ is µ-strongly convex w.r.t PX if the marginal distribution
is isotopic and log-concave [26], i.e., for any w, v we have
⟨χσw

P − χ
σv

P , w − v⟩ ≥ µ∥w − v∥22.
Under Assumption 2 and the above strong convexity we can

show that for any vector w,

EP [(σ(⟨w, x⟩)− σ(⟨w∗, x⟩))2] ≤ O(∥χσw

P − χ
σw∗
P ∥22)

≤ O(∥χσw

P − χP∥22 + ∥χ
σw∗
P − χP∥22)

= O(∥χσw

P − χP∥22 + LP(w
∗)).

Thirdly, by the triangle inequality we can easily find that
LP(w) ≤ O(LP(w

∗)+EP [(σ(⟨w, x⟩)−σ(⟨w∗, x⟩))2]). Thus,
in total we have for any vector w, LP(w) ≤ O(LP(w

∗) +
∥χσw − χP∥22). Moreover, we can easily get that χσw − χP
is the gradient of the population risk function of the surrogate
loss function in (2), i.e., ∇LℓP(w) = χσw − χP . Thus, it
is sufficient for us to find a private estimator w to make
∥∇LℓP(w)∥2 be as small as possible.

Although some previous studies have addressed finding a
first-order stationary point privately for population risk func-
tions, such as [2], [29], [30], their methods cannot be applied to
our function LℓP because they assume that the loss is Lipschitz
over Rd, which is not the case for our loss. To overcome this
challenge, we present a new algorithm, Adaptive DP Batched
Gradient Descent (Algorithm 8). The main idea is to partition
the dataset into several subsets and, in each iteration, use
one subset for private Gradient Descent. Although our loss
function ℓ(w;x, y) is not uniformly Lipschitz over Rd, we
can still find that ∥∇ℓ(wt−1;x, y)∥2 ≤

√
d∥wt−1∥2 + B,

whose upper bound only depends on the current model wt−1.
Therefore, we can still use the Gaussian mechanism with
sensitivity 2(∥wt−1∥2+B) to the gradient to ensure (ϵ, δ)-DP.
Our algorithm is fundamentally different from previous DP-
GD based methods [13], [18], as the Gaussian noise added
also depends on the current model. In general, our method
can provide a tighter bound, as ∥wt−1∥2 becomes smaller as
t increases, which implies that we add smaller noise to the
gradient.

Algorithm 8 Adaptive DP Batched Gradient Descent
Require: Private dataset: D = {(xi, yi)}ni=1, ReLU link func-

tion σ; privacy parameters 0 < ϵ, δ ≤ 1.
1: Partite the data D into T subsets {D1, · · · , DT } where
m = |Di| = n

T .
2: Denote the loss function ℓ as ℓ(w;x, y) =

∫ ⟨w,x⟩
0

(σ(z)−
y)dz. Initialize w0 = 0.

3: for i = 1, · · · , T do
4: Let wi = wi−1 − η(∇Lℓ(wi−1;Di) + ζi−1) =

wi−1 − η( 1
m

∑
x∈Di

(max{0, ⟨wi−1, xi⟩} − yi)xi +
ζi−1), where ζi−1 ∼ N (0, σ2

i−1Id) with σi−1 =
8(

√
d∥wt−1∥2+B)2 log(1.25/δ)

m2ϵ2 .
5: end for
6: return wT

Combining with all the above ideas, we can show the
following result for Algorithm 8.

Theorem 6. Consider ReLU regression and assume Assump-
tion 2 holds. For any 0 < ϵ, δ < 1, Algorithm 8 is (ϵ, δ)-
DP. Moreover denote w∗

ℓ = argminw∈Rd LℓP(w) with ℓ in
(2). For any error α ∈ (0, ∥w∗

ℓ ∥2), if n is sufficiently large

such that n ≥ Ω̃(max{
d∥w∗

ℓ ∥2

√
log 1

δ log 1
ζ

ϵα ,
∥w∗

ℓ ∥
2
2d log

4 1
ζ

α2 }),
setting T = O(log(∥w∗

ℓ ∥2)) and η ≤ 1
16 in Algorithm 8

we have the following with probability at least 1 − ζ with
ζ ≥ exp(−O(

√
d))

LP(wT ) ≤ 2(1 + 2µ)LP(w
∗) + α.

In Theorem 6, we demonstrate that for ReLU regression
under Assumption 2, the sample complexity required to
achieve LP(w) − c · LP(w

∗) ≤ α with some c > 0 is
Õ(max{ dϵα ,

d
α2 }). There are several differences in comparison

to the results in previous sections. Firstly, here we can only
obtain a bound for LP(w)−O(LP(w

∗)) instead of the original
excess population risk. In fact, this big-O term is necessary,
as [27] provides hardness results for LP(w) − LP(w

∗) ≤ α
with α ∈ (0, 1), even if the underlying distribution is the
standard Gaussian. The second difference is that unlike the
previous results, where sample complexities are independent
of d, the sample complexity here depends linearly on d.
This dependency results from two factors: the magnitude of
noise added depends on

√
d, and the estimation error of

∥∇Lℓ(w;D)∥2 introduces an additional d factor. We cannot
use the same strategy as in Algorithm 2 since projecting the
data will alter the sample distribution and destroy the strongly



convex property. Therefore, even in the non-private case, there
is still a factor of d in the sample complexity.

V. EXTENSION TO TWO-LAYER NEURAL NETWORKS

In this section, we present an extension of our previous
methods to one-hidden layer fully connected neural networks.
Our focus is mainly on the cases where the activation functions
are either sigmoid or ReLU. We restrict ourselves to the well-
specified model. Before presenting the details, we start by
extending our model (1) to a bounded noise setting in a high
dimensional feature space. We assume K is a kernel function
in a Reproducing Kernel Hilbert Space (RKHS) H ⊆ Rk
with some k, and ψ(·) ∈ Rk is the corresponding feature
map satisfying |ψ(x)|2 ≤ 1 for all x ∈ PX . We consider the
following model:

y = σ(⟨w∗, ψ(x)⟩+ ϕ(x)) + ζ, (4)

where w∗ ∈ H is the underlying parameter with ∥w∗∥2 ≤W ,
ϕ(x) is a noise function which satisfies |ϕ(x)| ≤ M , ζ is a
random noise whose mean is 0 and σ is a (non-convex) link
function. Note that in the case of ϕ(x) = 0 and ψ is the
identity function, (4) is equivalent to model (1). Similar to
the previous section, here we consider the squared loss where
LP(h) = E(x,y)∼P [(h(x)− y)2] for any function h 5 and we
want to minimize the excess population risk:

LP(h)−min
h
LP(h) = E(x,y)∼P [(h(x)−σ(⟨w∗, ψ(x)⟩+ϕ(x)))2].

We consider the model (4) because, as we will show later,
for some one-hidden layer neural networks, we can always
find w∗, ψ(·), and M to approximate the hidden layer, and
the link function σ can be viewed as the activation function
of the output layer. We first present the following assumption
for this section.

Assumption 3. We assume that there exist constants W,G =
O(1) such that ∥w∗∥2 ≤W , y ∈ [0, 1]6 and the link function
σ : R 7→ [0, 1] is G-Lipschitz and non-monotone decreasing,
and has sub-gradient everywhere. Moreover, in model (4) we
assume ∥ψ(x)∥2 ≤ 1 and ∥ϕ(x)∥2 ≤M for every x ∼ Px.

To minimize the population risk, similar to the previous
section, we consider the surrogate loss

ℓ(w;x, y) =

∫ ⟨w,ψ(x)⟩

0

(σ(z)− y)dz. (5)

By Lemma 2 we can see the ℓ is 1-Lipschitz and G-smooth.
Similar to Lemma 3, the following lemma shows the relation
between the original population risk and the population risk
for the surrogate loss.

Lemma 7. For any w ∈ H we have

LP(w)−min
h
LP(h) ≤ 4G(LℓP(w)−LℓP(w∗))+2G2M2+4GM.

5Note that since we need to estimate both w∗ and ϕ, here we use a function
instead of vector in the previous section.

6Note that here we assume y and σ is in [0, 1] is that there are commonly
used in practice. We can extend to any bounded interval.

By Lemma 7, we can see that it is sufficient to find a private
model that minimizes the difference between LℓP(w) and
LℓP(w

∗). To achieve this goal, we can use a similar algorithm
as presented in Algorithm 1, with the main difference being
the use of D̃ = (ψ(xi), yi)

n
i=1 instead of the raw data. For

more details, please refer to Algorithm 9. Similar to Theorem
1 and 2 we have the following result.

Algorithm 9 DP Two-layer Neural Networks
Require: Private dataset: D = {(xi, yi)}ni=1, link function

σ satisfies Assumption 3; privacy parameters 0 <
ϵ, δ ≤ 1, θ is an upper bound of the expected rank∑n
i=1 ψ(xi)ψ(xi)

T .
1: Denote the data D̃ = {(ψ(xi), yi)}ni=1. If ϵ > θ

n , run
Algorithm 2 with D̃. Otherwise run Algorithm 3 with D̃.

Theorem 7. Under Assumption 3, for any 0 < ϵ, δ ≤ 1,
Algorithm 9 is (ϵ, δ)-DP. Moreover we have its output w
satisfies

ELP(w)−min
h
LP(h) ≤ Õ(min{

√
θ log 1

δ

nϵ
,

√
log 1

δ√
nϵ
}

+
1√
n
+M2 +M),

where θ is an upper bound on the expected rank of∑n
i=1 ψ(xi)ψ(xi)

T if η = O(min{ ϵ√
θ log 1

δ

, 1√
n
}) ≤ 1

G

in Algorithm 2 and η = O(min{ ϵ√
m log 1

δ

, 1√
n
}) ≤ 1

G in

Algorithm 3 with m = O(log(n/δ)nϵ).

Remark 2. It is worth noting that the rate of sample size
n in Theorem 7 is lower than that in Theorem 1 (n−

1
2 v.s.

n−
2
3 ). This is due to that in the noiseless case (M = 0), w∗

is also a global minimizer of LℓP(w), which is not the case
in model (4). Therefore, we cannot rely on this property and
the smooth Lipschitz condition to demonstrate that the error
caused by projecting onto a lower space is Õ( 1

m ). Instead,
we can only use the Lipschitz condition to obtain an error of
Õ( 1√

m
).

One question is as we know LℓP(w)−LℓP(w∗) ≤ LℓP(w)−
minw∈Rk LℓP(w), why we do not consider to bound the latter
term? Actually, considering the latter term will make us get an
error that depends on ∥w∗

ℓ ∥2 with w∗
ℓ = argminw∈Rk LℓP(w),

whose upper bound is unknown. Thus, we need to analyze
LℓP(w) − LℓP(w

∗) directly. Fortunately, by giving a finer
analysis for the Phased SGD we can get such an upper bound.

Assuming that the term ϕ(x) is a noise function that is
bounded by a sufficiently small constant M , Theorem 7
implies that if a function f can be approximated by an element
of an appropriate RKHS, then Algorithm 7 can be used to
obtain a private estimator. This is formalized in the following
corollary.

Definition 7 ((M,W )-Uniform Approximation). Let f be a
function mapping from domain X to R and PX be a distribu-
tion over X . Let K be a kernel function with corresponding



RKHS H ⊆ Rk and feature vector ψ. We say f is (M,B)-
uniformly approximated by K over PX if there exists some
w∗ ∈ H with ∥w∗∥2 ≤ W such that for all x ∼ PX we have
|f(x)− ⟨w∗, ψ(x)⟩| ≤M.

Corollary 1. Consider a distribution P such that E[y|x] =
σ(f(x)) where σ is a known G-Lipshcitz and increasing
function, and f is (M,W )-approxiamted by some kernel
function K and feature map ψ such that K(x, x′) ≤ 1. The
function h(x) = σ(⟨w,ψ(x)⟩) for the output w in Algorithm
9 achieves the same error bound as in Theorem 7.

Next, we will apply Corollary 1 to some neural network
models by using some recent results on approximation theory
for neural networks [20]. We consider the following one-
hidden layer neural networks with k-hidden units and one
output node:

y = N2(x) + ζ, where N2 : x 7→ σ2(

k∑
t=1

btσ1(⟨at, x⟩)). (6)

Here we assume ∥x∥2 = 1, ∥at∥2 = 1 for each t and ∥b∥2 = 1
where b = (b1, · · · , bk), and σ1, σ2 are two activation func-
tions. Here σ2 satisfies the properties in Assumption 3 and σ1
could be either Sigmod and ReLU activation functions. In the
following, we provide sample complexities to achieve an error
of α for these two cases.

Theorem 8. Consider samples {(xi, yi)}ni=1 are i.i.d. drawn
from distribution P such that E[y|x] = N2(x) with σ2 : R 7→
[0, 1] is a known G-Lipshcitz and increasing function and σ1
is the sigmoid function. Then when n = O((kGα )2C log 1/δ

ϵ +

(Gkα )C
√
θ log 1/δ

ϵ ) with some constant C > 0 we have

ELP(h)−min
h
LP(h) = ELP(h)− LP(N2) ≤ α.

Here h(x) = σ(⟨w,ψ(x)⟩) for some feature map ψ(x) ∈ RDm

with Dm = Õ(dO(log k
α )) and w is the output of Algorithm 9

with the feature map ψ(·).

Theorem 9. Consider samples {(xi, yi)}ni=1 are i.i.d. drawn
from distribution P such that E[y|x] = N2(x) with σ2 : R 7→
[0, 1] is a known G-Lipshcitz and increasing function and σ1
is the ReLU function. Then when n = O(4C(Gk

α ) log 1/δ
ϵ +

2C(Gk
α )

√
θ log 1/δ

ϵ ) with some constant C > 0 we have

ELP(h)−min
h
LP(h) = ELP(h)− LP(N2) ≤ α.

Here h(x) = σ(⟨w,ψ(x)⟩) for some feature map ψ(x) ∈ RDm

with Dm = O(
√
k
α d

O( k
α )) and w is the output w of Algorithm

9 with the feature map ψ(·).

Remark 3. The results for one-hidden layer neural networks
are quite intricate. Firstly, the sample complexity now de-
pends on poly(k) in the sigmoid case and depends on the
exponential of k and 1

α in the ReLU case, which is due
to the approximation errors using feature maps. However,
it is noteworthy that, similar to the GLM case, the sample
complexities are still independent of the data dimension. The

second difference is that Algorithm 9 is inefficient in the ReLU
case, as the dimension of the feature map will be exponential.
Hence, developing efficient algorithms for privately learning
one-hidden layer networks will remain an open problem.

VI. PRIVATE MULTI-LAYER NEURAL NETWORKS VIA
DP-SGD

In previous sections, we examined GLMs and one-hidden
layer neural networks, but there are three critical issues with
those results: (1) While we proposed several new algorithms,
DP-SGD based methods [7] are preferred in practice for pri-
vate neural network training. Can we obtain utility guarantees
for vanilla DP-SGD in [7]? Alternatively, how do different
factors such as the number of nodes, clipping threshold, and
iteration number impact the utility theoretically? (2) Most of
the aforementioned results rely on the well-specified model
assumption and the squared loss in population risk, which can
be too stringent in practice. Can we provide utility analysis
without these assumptions? (3) Previous methods for one-
hidden layer networks heavily depend on their specific forms
and cannot be extended to general multi-layer structures. To
address these issues, we study the utility of the projected
version of DP-SGD for general multi-layer neural networks
in this section.

We consider fully connected neural networks with depth
(number of layers) L, width m in each layer, and input data
dimension d. Such a network could be represented by its
weight matrices at each layer: For L ≥ 2, let W1 ∈ Rm×d

be the weight matrix between the input layer and the first
hidden layer, Wl ∈ Rm×m with l = 2, · · · , L − 1 as the
weight matrices between hidden layers and WL ∈ R1×m be
the weight matrix between the last hidden layer to the output
layer.7 For simplicity we denote W = (W1, ...,WL). Then
the neural network on sample x can be written as

f(W, x) = (
√
m) ·WLσ(WL−1σ(WL−2...σ(W1x)...)),

where σ(·) is the entry-wise activation function. In this pa-
per, for convenience, we only consider the ReLU activation
function σ(s) = max{0, s}, which is arguably one of the
most difficult activation functions to analyze due to its non-
smoothness. The general analysis framework is able to extend
to other activation functions like tanh, and sigmoid, as long
as the function is smooth almost everywhere.

Besides the neural network, we also have a non-
negative, differentiable, and S-Lipschitz convex loss function
ℓ(f(W, x), y) (denoted as ℓ(W;x, y)) which measures the
difference between the prediction of network and the ground
truth. In total, now our excess population risk is defined
as E(x,y)∼Dℓ(W;x, y) − minW∈W E(x,y)∼Dℓ(W;x, y). We
consider the following assumption throughout the whole part,
which is commonly used in the previous work on analyzing
theoretical behaviors of multi-layer neural networks such as
[31], [32].

7For simplicity, we assume the widths of each hidden layer are the same.
Our result can be extended to the setting where the widths of each layer are
not equal in the same order.



Assumption 4. Assume ||x||2 ≤ 1 for all x ∈ Px and the
parameter space of the network is W = B(0, R), i.e., for all
W ∈ W : ||Wl||F ≤ R, for all l ∈ [L].

We aim to provide an upper bound on the excess population
risk for DP-SGD in Algorithm 10 instead of developing new
algorithms. Note that there are slight differences between
Algorithm 10 and the one in [7]. First, in the first step of
Algorithm 10, the initial weight matrices are i.i.d. sampled
from a specific Gaussian distribution, which is crucial for
our utility analysis. Secondly, in step 6, we need to perform
the projection after using the noisy and clipped sub-sampled
gradients to update our weight matrices. In fact, the projection
step is also necessary for our analysis. Finally, instead of using
the weight matrices in the last iteration, our output is the
average of all the intermediate weight matrices. We use the
average for convenience of analysis, but we can still obtain a
similar utility for the last iteration weight matrices by using
the same strategy as in [33].

The main idea of our utility analysis is based on recent
developments in the Neural Tangent Kernel (NTK) technique
[34], which explains the generalization behaviors and provides
theoretical guarantees for SGD in overparameterized neural
networks. To introduce the idea of NTK, we first recall the
definition of a Neural Tangent Random Feature function.

Definition 8 (Neural Tangent Random Feature). Let W(0)

be generated via the initialization process in Algorithm 10.
Then the Neural Tangent Random Feature (NTRF) function is
defined as

fntk(W,x) = f(W(0),x) +
〈
∂Wf(W(0),x),W

〉
.

Consider the parameter space B(W(0), ω), the corresponding
NTRF function class is denoted as

F(W(0), ω) = {fntk(W, x) : W ∈ B(W(0), ω), ||x||2 ≤ 1}.

Note that an NTRF function is linear. The idea of using
NTK to analyze the generalization performance of overpa-
rameterized neural networks is based on the observation that
the dynamic of wide neural networks under SGD is similar
to that of the corresponding local linearization. In detail,
let W (t) denotes the updated parameter vector after the t-
th iteration, and Lf =

∑
(x,y)∈D ℓ(f(W

(t);x), y) denotes the
sum of loss with respect to f . Via continuous time gradient
descent we have W (t+∆t) − W (t) = −η∆t∂L(t)∂W . Since
∂f(W (t),DX )

∂t = ∇W f(W (t), DX )∂W
(t)

∂t , and by chain role
∂W (t)

∂t = −η∇W f(W (t), DX )T∇f(W (t),DX )L, where

f(W (t), DX ) = vec([f(W (t), xi)]x∈[n])

is the vector of f(W (t), xi). The evolution of the neural

network f and fntk can be written by

∂f(W (t), DX )

∂t
= −ηΘt(DX , DX )∇fLf(W (t),DX )︸ ︷︷ ︸

Gradient of Neural Network

,

∂fntk(W
(t), DX )

∂t
= −ηΘ0(DX , DX )∇fLfntk(W (t),DX )︸ ︷︷ ︸

Gradient of Local Linearization

,

where Θ0(X ,X ) = EW (0)∇W f(W (0), DX )∇W f(W (0), DX )T

is the NTK matrix and Θt(DX , DX ) =
∇W f(W (t), DX )∇W f(W (t), DX )T is the empirical NTK.
Recently, [35] gives the first non-asymptotic convergence rate
for the NTK matrix Θt and shows ||Θt − Θ0||F → 0 when
m is sufficiently large, i.e., the empirical NTK is proved to
converge to a deterministic kernel under the infinite width
setting [34] with high probability. Based on this, when m is
sufficiently large, from the above two equations we can see
a basic idea to approximate the gradients of neural networks
is using their linearizations, which are convex. Moreover,
we can also control the difference between f(W (t), x) and
fntk(W

(t), x) by the term ||Θt − Θ0||F . Thus, via NTK,
analyzing the utility of SGD for neural networks will become
similar to analyzing the utility of SGD for convex loss.
Motivated by the above intuition, we finally get the following
theorem for the utility of Algorithm 10.

Theorem 10. There exist constants c1, c2 so that given the
number of steps T and q = M/n, for any ϵ < c1q

2T ,
Algorithm 10 is (ϵ, δ)-DP for any 0 < δ < 1 if we have

σt ≥ c2
qC
√
T log(1/δ)

|Bt|ϵ . Moreover, for any ξ ∈ (0, e−1], 0 <
γ1, γ < 1, and R > 0, there exists

m∗(ξ,R, L, S, T, C) = Ω̃(Poly(S,L,R)T 7C−8[log(1/ξ)]3)

such that if C ≤ O(min{SL
√
m,R}), m ≥ m∗ , M ≥

Ω(log T
γ1
) and n ≥ Ω̃(

C(
√
Lm+

√
md)
√
T log(1/γ) log(1/δ)

Rϵ ), then
with probability at least 1 − ξ − γ − γ1 over the random-
ness of the algorithm, the excess population risk LD(Ŵ) −
minW∈W LD(W) of the output in Algorithm 10 with step
size η = Θ(

√
LR

C
√
mT

) is upper bounded by√
log( 1ξ )

T︸ ︷︷ ︸
Convergence rate

+ inf
f∈F(W(0), R√

m
)
{ 1
T

T∑
i=1

ℓ(f(xi), yi)}︸ ︷︷ ︸
Approximation error

+ SL
3
2R · Õ(

max(L, dm ) log( 1γ ) log(
1
δ )m

2
√
T

n2ϵ2︸ ︷︷ ︸
Privacy error

). (7)

Remark 4. Compared to the results in previous sections,
Theorem 10 provides a more complex upper bound. This upper
bound is composed of three terms: The first term represents
the sum of convergence rate and sampling error. The second
term is the minimum value of 1

T

∑T
i=1 ℓ(f(xi), yi) among all

reference functions in the NTRF function class. This term
arises due to the approximation error caused by using NTRF



functions to approximate neural networks. The last term corre-
sponds to the error resulting from the addition of extra noise to
gradients to ensure differential privacy. It is notable that when
ϵ = ∞, i.e., when in the non-private case, our result will be
O(inff∈F(W(0), R√

m
){ 1
T

∑T
i=1 ℓ(f(xi), yi)}+

1√
T
). Moreover,

when m,T →∞, the error will tend to zero.

Remark 5. Compared to the convex case, the impact of
parameters T and m on the bound in Theorem 10 is more
complicated. For network width m, if it is large enough, then
fntk(W

(0), x) will converge to a well-trained neural network,
as pointed out by [34], [36], [37]. In the interpolation regime,
the training error can be zero, which means the approximation
error tends to zero as m becomes sufficiently large. However,
m cannot be arbitrarily large because the privacy error depends
on poly(m). As for parameter T , it should not be too large
or too small. When T is large, the privacy error increases,
and when T is small, the convergence error becomes large.
Furthermore, the upper bound is independent of the clipping
threshold C because we assume that C ≤ R and the step size
η depends on 1

C (which implies that C cannot be too small).
Thus, when C is in some range, it will not have a significant
impact on performance. However, the effect of C when it is
large or small remains an open problem.

Remark 6. The main weakness of Theorem 10 is the assump-
tion of n ≥ O(m), which contradicts the overparameterized
setting in NTK theory, where the number of nodes could be
far greater than the sample size n. To address this weakness,
recent studies have proposed additional assumptions on the
gradient or loss of neural networks, such as low-rank gradients
[8] and restricted Lipschitz continuity [38]. However, all of
these works only analyze the excess population risk for convex
loss functions. Since we can show, via NTK theory, that the
loss function is locally convex and has a bounded gradient
with large enough m with high probability, we believe that
it is possible to remove the dependency on the number of
weights in the utility by combining our theoretical analysis
with those assumptions. This will be left as future work.

A. Experimental Investigation

In order to validate the usefulness of the aforementioned
theorem and investigate the effect of hyperparameters on the
error, as mentioned in Remark 5, we conducted experiments
using a three-layer MLP model on the MNIST dataset. The
training set comprised 60,000 samples, with each sample
represented by a 784-dimensional vector.

1) First, we aim to study the NTRF approximation
error in the bound of Theorem 10 with differ-
ent values of R and m, which can be approxi-
mated by solving the convex optimization problem
inff∈F(W (0),R/

√
m)

1
|S|

∑
(x,y)∈S ℓ(f(x), y) with pro-

jected stochastic gradient descent. In this particular
experiment, we set the width of MLPs for each layer as
{200, 500, 2000}, respectively. Each model is trained for
200 epochs with a learning rate of 10−2. R/

√
m varies

Algorithm 10 DP-SGD for Multi-layer Neural Networks
Require: : Private dataset: D, convex set W = B(0, R).

Parameters: learning rate η, mini-batch size M , iteration
T , privacy parameter ϵ ≤ 1, δ ≤ 1/n2, clipping constant
C.

1: Generate each entry of W
(0)
l independently from

N(0, 2/m), l ∈ [L − 1]. Generate each entry of W
(0)
L

independently from N(0, 1/m).
2: for t = 0 to T − 1 do
3: For each data (xi, yi) ∈ D sample it probability p.

Denote the batch as Bt.
4: For each (x

(t)
j , y

(t)
j ) ∈ Bt, denote gt(x

(t)
j ) =

∇ℓ(W(t);x
(t)
j , y

(t)
j ).

5: Let g̃t(x
(t)
j ) = gt(x

(t)
j )/max(1,

||gt(x(t)
j )||2
C ).

6: Update weight matrices as W(t+1) = ΠW(W(t) −
η · ( 1

|Bt|
∑

(x
(t)
j ,y

(t)
j )∈Bt

g̃t(x
(t)
j ) + Gt)), where Gt ∼

N (0, σ2I) drawn independently each iteration.
7: end for
8: return W̃priv =

1
T

∑T
t=1 W

(t)
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Fig. 1. Results of the first term in Theorem 8.

from 0.1 to 1.9 with a step of 0.2. Figure 1 reports the
average results of 10 runs.

2) Next, we investigate the impact of the clipping constant
C on the testing loss. To do so, we apply the DP-SGD
optimizer to a three-layer MLP model with a width of
256, and train the model for 200 epochs with a learning
rate of η = 0.01, using a training set of 60,000 samples.
We set ϵ = 1 and δ = 1/n2. The results are shown in
Figure 2.

3) In Figure 3, we plot the mean testing error and 95%
confidence interval based on 10 runs of the DP-SGD
optimizer with different values of m. The optimizer
is applied to a three-layer MLP model trained with a
learning rate of 0.01 and 200 epochs, using n = 5, 000,
ϵ = 1, δ = 1/n2, and C = 20.

4) In Figure 4, we plot the testing error mean value and
95% confidence interval of 10 runs with different value
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Fig. 5. Impact of sample size n.

of T , which illustrates how the testing loss will change
as T increases with the setting of n = 60, 000 and m =
256. Other parameters are the same as above.

5) In Figure 5, we plot the impact of n on the testing
error of DP-SGD. In this setting, we choose the pa-
rameters satisfying the condition in Theorem 10, with
m = (n

14
15 )/2, T = 50n

2
15 , ϵ = 1, δ = 1/n2 and

C = 20. It is notable that our parameter setting is to
make each term in the upper bound (7) decrease when
n becomes larger.

Analysis. The results presented in the above figures provide
insightful findings on the impact of different hyperparame-
ters on the excess population risk in DP-SGD-trained neural
networks. Figure 1 shows that the approximation error in the
upper bound of Theorem 10 yields a small and meaningful
value, and that increasing the size of the hyperparameter space
R results in a smaller approximation error. Moreover, when
the network width m is increased, the approximation error
tends to zero, indicating that the NTRF space can better fit
wider neural networks on the training data. Figure 2 illustrates
that when the clipping constant C is chosen from [1, 64], the
excess population risk remains unaffected, which aligns with
our theoretical analysis. The curves in Figure 3 and Figure
4 show that the excess population risk has a trade-off in

choosing the network width m and training iteration T , with
neither of them being too large or too small. This is consistent
with our theoretical findings and our discussions in Remark
5. Furthermore, Figure 5 demonstrates that the performance
of DP-SGD is similar to that of non-private SGD when the
sample size is sufficiently large. These findings highlight the
importance of carefully tuning hyperparameters in DP-SGD-
trained neural networks and provide valuable guidance for
practical applications.

VII. CONCLUSION

We presented a comprehensive study on the theoretical
guarantees of DP Multi-layer Neural Networks. We started
by considering the case where there are no hidden nodes, i.e.,
non-convex Generalized Linear Models. In the well-specified
model, we studied the cases where the link function is Lips-
chitz and bounded (such as sigmoid) or unbounded (such as
ReLU). We also analyzed ReLU regression in the misspeci-
fied model to highlight its difference from the well-specified
model. Next, we extended our techniques to two-layer neural
networks with sigmoid or ReLU activation functions in the
well-specified model. Finally, we analyzed the standard DP-
SGD method for general multi-layer neural networks and
provided an upper bound for the excess population risk.
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APPENDIX A
OMITTED PROOFS IN SECTION IV

Proof of Lemma 2. Note that by the definition of ℓ we have for any w,

∇ℓ(w;x, y) = (σ(⟨w, x⟩ − y) · x,
∇2ℓ(w;x, y) = σ′(⟨w, x⟩ · xxT ,

where σ′(·) is a subgradient of σ. Since σ is increasing, we have σ′(·) ≥ 0. Therefore we have ∇2ℓ(w;x, y) ≻ 0 and ℓ(·;x, y)
is convex and its Hessian matrix has rank at most 1. Since ∥∇ℓ(w;x, y)∥2 ≤ 2BR and ∇2ℓ(w;x, y) ≺ GR2Id, ℓ(·;x, y) is
2B-Lipschitz and G-smooth.

Proof of Lemma 3 . For any fixed x we have

Ey[ℓ(w;x, y)]− Ey[ℓ(w∗;x, y)] = Ey
∫ ⟨w,x⟩

⟨w∗,x⟩
(σ(z)− y)dz

=

∫ ⟨w,x⟩

⟨w∗,x⟩
(σ(z)− Eyy)dz =

∫ ⟨w,x⟩

⟨w∗,x⟩
(σ(z)− σ(⟨w∗, x⟩))dz

=

∫ ⟨w,x⟩

⟨w∗,x⟩

σ′(z)(σ(z)− σ(⟨w∗, x⟩))
σ′(z)

dz

≥ 1

2G
(σ(⟨w, x⟩)− σ(⟨w∗, x⟩))2,

where the last inequality is due to the fact that σ is monotonically increasing and G-Lipschitz. Thus, taking the expectation
of x we have

LℓP(w)− LℓP(w∗) ≥ 1

2G
Ex(σ(⟨w, x⟩)− σ(⟨w∗, x⟩))2

=
1

2G
(LP(w)− LP(w

∗)).

Proof of Theorem 1. Before the proof, we first provide some notations. For any u, u′ ∈ Rd, let ∥u∥V =
√
uTV V Tu as the

semi-norm of u induced by V , and let ⟨u, u′⟩V = uTV V Tu′.
Since ℓ(·;x, y) is 2B-Lipschitz and G-smooth, by Theorem 4.4 in [39] we can see it is (ϵ, δ)-DP when η ≤ 2

G . For utility,
it is sufficient to show that

ELP(wk)− LP(w
∗) ≤ O(GBW (

√
θ log 1

δ

nϵ
+

1√
n
)). (8)

Our proof follows the proof of convex GLM in [9]. We first show the following lemma.

Lemma 8. For each epoch i we have E[LℓP(w̄i)− LℓP(w̄i−1)] ≤ E∥w̄i−1−wi−1∥2
V

2ηini
+ 2B2ηi.

Proof. For simplicity we omit the subscript i in wti and ηi. Denote Φt = ∥wt − w̄i−1∥2V , we have

Φt+1 = Φt − 2η⟨∇ℓ(wt;xt, yt), wt − w̄i−1⟩+ η2∥∇ℓ(wt;xt, yt)∥22
≤ Φt − 2η⟨∇ℓ(wt;xt, yt), wt − w̄i−1⟩+ 4η2B2,

where the first inequality is due to the fact that ∇ℓ(wt;xt, yt) in the span of V and ℓ is 2B-Lipschitz. Thus,

⟨∇ℓ(wt;xt, yt), wt − w̄i−1⟩ ≤
Φt − Φt+1

2η
+ 2B2η.

By the convexity of LℓP and take the expectation w.r.t all the data we have

E[LℓP(wt)− LℓP(w̄i−1)] ≤ E[⟨∇LℓP(wt), wt − w̄i−1⟩]

≤ E[
Φt − Φt+1

2η
] + 2B2η.



Thus, we have

E[LℓP(w̄i)− LℓP(w̄i−1)] ≤
E[Φ1]

2ηni
+ 2B2η =

E∥w̄i−1 − wi−1∥2V
2ηni

+ 2B2η.

Now we back to our proof. Denote w̄0 = w∗
ℓ and ζ0 = w0 − w∗

ℓ , where w∗
ℓ = argminw∈Rd LℓP(w), we have

E[LℓP(wk)− LℓP(w∗
ℓ )]

= E[LℓP(wk)− LℓP(w̄k)] +
k∑
i=1

E[LℓP(w̄i)− LℓP(w̄i−1)]

≤
k∑
i=1

(
E∥ζi−1∥2V
2ηini

+ 2B2ηi) + E[LℓP(wk)− LℓP(w̄k)].

Note that for all 2 ≤ i ≤ k, we have

E∥ζi−1∥2V = EV [Eζi−1
[ζTi−1V V

T ζi−1|V ]] ≤ θτ2i−1.

And when i = 1, E∥ζi−1∥2V ≤ ∥w0 − w∗
ℓ ∥22. For E[LℓP(wk)− LℓP(w̄k)] we have

E[LℓP(wk)− LℓP(w̄k)] ≤ 2BE[⟨ζk, x⟩] ≤ 2Bτk ≤ O(
WB

√
log 1

δ

ϵn
5
2

).

In total we have

k∑
i=1

(
E∥ζi−1∥2V
2ηini

+ 2B2ηi) + E[LℓP(wk)− LℓP(w̄k)]

≤
k∑
i=2

(
θτ2i−1

2ηini
+ 2B2ηi) +

∥w0 − w∗
ℓ ∥22

2η1n1
+ 2B2R2η1 +O(

WB
√

log 1
δ

ϵn
5
2

)

≤ O(BW (

√
θ log 1

δ

nϵ
+

1√
n
)).

Note that by Lemma 3 we can see that w∗
ℓ = w∗. Thus we have ELP(w) − LP(w

∗) ≤ 2G(ELℓP(w) − LℓP(w
∗)) ≤

O(GBW (

√
θ log 1

δ

nϵ + 1√
n
)).

Proof of Theorem 2. We first prove the privacy guarantee. Let α ≤ 1 be a parameter to be set later. From the JL property we
know that with m = O( logn/δα2 ), then with probability at least 1− δ

2 for all feature vectors we have ∥Φxi∥2 ≤ (1+α)∥xi∥2 ≤
2∥xi∥2, and ∥Φw∗∥2 ≤ 2∥w∗∥2 ≤ 2W . In the following we will show if the previous events hold (which is denoted as E)
then the Algorithm is (ϵ, δ2 )-DP.

To see this note that ℓ(wti ; x̃
t
i, y

t
i) = ℓ(wti ; Φx

t
i, y

t
i), we have ∥∇ℓ(wti ; x̃ti, yti)∥2 = ∥(σ(⟨wti ,Φxti⟩) − yti)Φxti∥2 ≤ 4B and

ℓ(wti ; x̃
t
i, y

t
i) is 4G-smooth. Thus, by Theorem 1 it is (ϵ, δ2 )-DP if η ≤ 2

4G .
We then show the whole algorithm A is (ϵ, δ)-DP. Consider any event of the output S and any neighboring datasets D ∼ D′,

we have

P(A(D) ∈ S) = P(A(D) ∈ S
⋂
E) + P(A(D) ∈ S

⋂
Ē)

≤ eϵP(A(D′) ∈ S
⋂
E) +

δ

2
+ P(A(D) ∈ Ē)

≤ eϵP(A(D′) ∈ S) + δ.

Next we will show the utility. For simplicity we denote the projected distribution P ′ = ΦP we first decompose the excess
population risk as the following:

E[LℓP(ŵ)]− LℓP(w∗) = E[LℓP′(wk)]− EΦ,D̃L
ℓ(Φw∗, D̃) + EΦ,D̃L

ℓ(Φw∗, D̃)− LℓP(w∗).



For the second term by Lemma 3 we know w∗ is also the global minimizer of LℓP(w
∗) and by Lemma 2 we know it is

G-smooth, thus we have

EΦ,D̃L
ℓ(Φw∗, D̃)− LℓP(w∗) = EΦ,(xi,yi)∼P [g

yi(⟨Φw∗,Φxi⟩)− gyi(⟨w∗, xi⟩)]

≤ ∇LℓP(w∗) +
G

2
E∥⟨Φw∗,Φxi⟩ − ⟨w∗, xi⟩∥22

=
G

2
E∥⟨Φw∗,Φxi⟩ − ⟨w∗, xi⟩∥22 (9)

where the last inequality is due to that

Exi,Φ|⟨Φw∗,Φxi⟩ − ⟨w∗, xi⟩| = Exi
EΦ|⟨Φw∗,Φxi⟩ − ⟨w∗, xi⟩|2 ≤ Õ(W

1

m
).

To bound the first term, we first Φ and use a similar analysis as in the proof of Theorem 1. The main difference here we
use the following lemma instead of ∥w̄i−1 − wi−1∥2V . Note that it is always true as ∥w̄i−1 − wi−1∥2V ≤ ∥w̄i−1 − wi−1∥22

Lemma 9. For each epoch i we have E[LℓP′(w̄i)− LℓP′(w̄i−1)] ≤ E∥w̄i−1−wi−1∥2
2

2ηini
+ 2B2ηi.

Denote w̄0 = Φw∗ and ζ0 = w0 − Φw∗, we have

E[LℓP′(wk)]− ELℓP′(Φw∗)

= E[LℓP′(wk)− LℓP′(w̄k)] +
k∑
i=1

E[LℓP′(w̄i)− LℓP′(w̄i−1)]

≤
k∑
i=1

(
E∥ζi−1∥22
2ηini

+ 2B2ηi) + E[LℓP′(wk)− LℓP′(w̄k)].

Note that for all 2 ≤ i ≤ k, we have E∥ζi−1∥22 = mτ2i−1. For E[LℓP′(wk)− LℓP′(w̄k)] we have

E[LℓP′(wk)− LℓP′(w̄k)] ≤ 2BE[⟨ζk, x⟩] ≤ 2Bτk ≤ O(
WB

√
log 1

δ

ϵn
5
2

).

In total we have
k∑
i=1

(
E∥ζi−1∥22
2ηini

+ 2B2ηi) + E[LℓP′(wk)− LℓP′(w̄k)]

≤
k∑
i=2

(
mτ2i−1

2ηini
+ 2B2ηi) +

∥w0 − Φw∗∥22
2η1n1

+ 2B2R2η1 +O(
WB

√
log 1

δ

ϵn
5
2

)

≤ O(BW (

√
m log 1

δ

nϵ
+

1√
n
)).

Note that the previous bound only holds when ∥Φxi∥ ≤ (1 +
log
√
n/δ

m ) which holds with probability at least 1− δ. Thus we
can use the same argument as in the Proof of Lemma 8 in [16] to transform the above result to a result of the expectation
w.r.t Φ with an additional logarithmic factor. Thus, in total we have

E[LℓP(ŵ)]− LℓP(w∗) ≤ Õ(GW
1

m
+BW (

√
m log 1

δ

nϵ
+

1√
n
))

Take m = O(log(n/δ)(nϵ)
2
3 ) we can get ELP(ŵ)− LP(w

∗) ≤ 2G(ELℓP(ŵ)− LℓP(w∗)) ≤ Õ(G2WB(

√
log 1

δ

(nϵ)
2
3

+ 1√
n
)).

Proof of Lemma 6. Note that by our definition we have ∇fβ(w;x, y) = xg′yβ (⟨w, x⟩), where

g′yβ (m) = β[m− proxβg (m)]. (10)

Next we will provide an algorithm to approximate proxβℓ (x) for given x. Recall that by the definition

proxβg (m) = argmin
u∈R

[gy(u) +
β

2
|u−m|2]



First we will show that proxβg (m) ∈ [m− 4B
β ,m+ 4B

β ]. For simplicity we denote u∗ = argminu∈R h(u) = argminu∈R[g
y(u)+

β
2 |u−m|

2]. Then since u∗ is the minimizer of h(·) we have

0 ≤ h(m)− h(u∗) = gy(m)− gy(u∗)− β

2
|u∗ −m|2

⇐⇒ β

2
|u∗ −m|2 ≤ gy(m)− gy(u∗).

Since we have gy(·) is 2B-Lipschitz (Lemma 2). Thus,

β

2
|u∗ −m|2 ≤ g(y)(m)− g(y)(u∗) ≤ 2B|m− u∗| ⇐⇒ |m− u∗| ≤ 4B

β
.

That is
proxβg (m) = argmin

u∈R
[gy(u) +

β

2
|u−m|2] = argmin

u∈Q
[gy(u) +

β

2
|u−m|2],

where Q = [m − 4B
β ,m + 4B

β ]. Moreover, on the constraint set Q, function h(·) is β-strongly convex and 2B + 4B =
6B-Lipschitz. Thus, from a standard result on convergence of Gradient Decent for strongly and Lipschitz functions (which
corresponds to Step 3 to 7 in Algorithm 4, note that Step 5 is just the projection onto the set Q) in [40] we can see that after
T -steps we have

β

2
|ŵ − u∗|2 ≤ h(ŵ)− h(u∗) ≤ 72B2

β(T + 1)
.

Thus we have |ŵ − u∗| ≤ 12B
β
√
T

. Thus we have ∥xβ[⟨w, x⟩ − ŵ]−∇fβ(w;x, y)∥2 ≤ 12B√
T

.

Proof of Theorem 3. We first proof the guarantee of (ϵ, δ)-DP. Note that unlike Algorithm 2, here we use an approximation
of ∇fβ(w;x, y). Consider a neighboring dataset D′ of D assume the different samples are in Di which are denoted as xti and
x

′t
i respectively. Moreover, we denote w

′t
i as the parameters when implementing the algorithm on D′. Then by our assumption

we have wti = w
′t
i but wt0i ̸= w

′t0
i when t0 ≥ t+ 1. Moreover, for any t0 ≥ t+ 1 we have

∥wt0i − w
′t0
i ∥2 ≤ ∥w

t0−1
i − ηi∇fβ(wt0−1

i ;xt0−1
i , yt0−1

i )− w
′t0−1
i + ηi∇fβ(wt0−1

i ;x
′t0−1
i , y

′t0−1
i )∥2 + 2ηiγ

where xt0i ̸= x
′t0
i if t0 = t+ 1 and xti = x

′t
i otherwise. Note that since fβ is β-smooth. Thus, by using a similar proof as in

[41] we have when η ≤ 2
β and t0 ≥ t+ 2 we always have

∥wt0−1
i − ηi∇fβ(wt0−1

i ;xt0−1
i , yt0−1

i )− w
′t0−1
i + ηi∇fβ(wt0−1

i ;x
′t0−1
i , y

′t0−1
i )∥2 ≤ ∥wt0−1

i − w
′t0−1
i ∥2.

Thus, we always have ∥wt0i − w
′t0
i ∥2 ≤ ∥w

t0−1
i − w

′t0−1
i ∥2 + 2ηiγ.

When t0 = t + 1 by using a similar proof as in [41] ans since fβ is 2B-Lipschitz we have ∥wt0−1
i −

ηi∇fβ(wt0−1
i ;xt0−1

i , yt0−1
i )−w

′t0−1
i +ηi∇fβ(wt0−1

i ;x
′t0−1
i , y

′t0−1
i )∥2 ≤ 4Bηi. Thus we have ∥wt+1

i −w
′t+1
i ∥2 ≤ 4Bηi+2γηi.

In total we have ∥wt0i − w
′t0
i ∥2 ≤ 4Bηi + 2ηiγt0. And thus ∥w̄i − w̄′

i∥ ≤ 4Bηi + γηi(n + 1) ≤ 5Bηi. Thus, the ℓ2-norm
sensitivity is 5Bηi. By the Gaussian mechanism we have the algorithm is (ϵ, δ)-DP.

Next we will focus on the utility. We first show the following lemma which follows [9] for self-completeness:

Lemma 10. Let α, η be as in Theorem 3. Then for each phase i, we have

E[Fβ(w̄i)− Fβ(w̄i−1)] ≤
E[∥wi−1 − w̄i−1∥2V ]

2ηini
+

5ηiB
2

2
+

(BE[∥wi−1 − w̄i−1∥V ] + 1)√
n log n

.

Proof. For simplicity we denote Fβ(w) = E[fβ(w;x, y)] omit the subscript i. Denote Φt = ∥wt − w̄i−1∥2V , we have

Φt+1 = Φt − 2η⟨∇̃fβ(wt;xt, yt), wt − w̄i−1⟩V + η2∥∇̃fβ(wt;xt, yt)∥2V
≤ Φt − 2η⟨∇fβ(wt;xt, yt), wt − w̄i−1⟩+ 2ηγ∥wt − w̄i−1∥V + η2(γ2 + 4B2),

where the first inequality is due to the fact that ∇fβ(wt;xt, yt) in the span of V . Thus,

⟨∇fβ(wt;xt, yt), wt − w̄i−1⟩ ≤
Φt − Φt+1

2η
+ γ∥wt − w̄i−1∥V +

η

2
(γ2 + 4B2).

Taking the expectation w.r.t all randomness we have

⟨∇Fβ(wt), wt − w̄i−1⟩ ≤
E[Φt − Φt+1]

2η
+ γE∥wt − w̄i−1∥V +

η

2
(γ2 + 4B2).



By the convexity of Fβ we have ⟨∇Fβ(wt), wt − w̄i−1⟩ ≥ E[Fβ(wt)− Fβ(w̄i−1)]. Thus, we have

E[Fβ(w̄i)− Fβ(w̄i−1)] ≤
E[Φ1]

2ηni
+
γ

ni
E[

ni∑
t=1

∥wt − w̄i−1∥V ] +
η

2
(γ2 + 4B2).

Next we bound the term
∑ni

t=1 ∥wt − w̄i−1∥V :

∥wt − w̄i−1∥V ≤ ∥wt−1 − w̄i−1∥V + ∥wt − wt−1∥V

≤ · · · ≤ ∥wi−1 − w̄i−1∥V +

t∑
j=2

∥wj − wj−1∥V

≤
√
Φ1 + η(t− 1)(2B + γ).

In total we have

E[Fβ(w̄i)− Fβ(w̄i−1)]

≤ E[Φ1]

2ηni
+ αE[

√
Φ1 + ηni(2B + γ)] +

η

2
(γ2 + 4B2)

≤ E[Φ1]

2ηni
+

5ηB2

2
+ γ(E[

√
Φ1] + 3niηB),

where the last step follows from the fact that γ = B
n logn ≤ B. Since we have η ≤ W

6B
√
n

, we have 3niηB ≤
√
n. In total we

have

E[Fβ(w̄i)− Fβ(w̄i−1)] ≤
E[Φ1]

2ηni
+

5ηB2

2
+

(BE[
√
Φ1] + 1)√

n log n
.

Now we back to the proof of Theorem 3. Denote w̄0 = w∗
β and ζ0 = w0 − w∗ and by Lemma 10 we have

E[Fβ(wk)− Fβ(w∗)]

=

k∑
i=1

E[Fβ(w̄k)− Fβ(w̄k−1)] + E[Fβ(wk)− Fβ(w̄k)]

≤
k∑
i=1

E[∥wi−1 − w̄i−1∥2V ]
2ηini

+
5ηiB

2

2
+

(BE[∥wi−1 − w̄i−1∥V ] + 1)√
n log n

+ E[Fβ(wk)− Fβ(w̄k)]

=

k∑
i=1

E[∥ζi−1∥2V ]
2ηini

+
5ηiB

2

2
+
BE[∥ζi−1∥V ] + 1√

n log n
+ E[Fβ(wk)− Fβ(w̄k)].

Note that for all 2 ≤ i ≤ k, we have

E∥ζi−1∥2V = EV [Eζi−1
[ζTi−1V V

T ζi−1|V ]] ≤ θτ2i−1.

And when i = 1, E∥ζi−1∥2V ≤ ∥w0 − w∗
ℓ ∥22. For E[Fβ(wk)− Fβ(w̄k)] we have

E[Fβ(wk)− Fβ(w̄k)] ≤ 2BRE[⟨ζk, x⟩] ≤ 2Bτk ≤ O(
WBR

√
log 1

δ

ϵn
5
2

).



In total we have

E[Fβ(wk)− Fβ(w∗)] ≤
k∑
i=1

E[∥ζi−1∥2V ]
2ηini

+
5ηiB

2

2
+
BE[∥ζi−1∥V ] + 1√

n log n
+ E[Fβ(wk)− Fβ(w̄k)]

≤ O(B(∥w0 − w∗∥22 + 1)(

√
θ log 1

δ

nϵ
+

1√
n
))

+

k∑
i=2

[
θτ2i−1

2ηini
+

5ηiB
2

2
+
B(
√
θτi−1 + 1)√
n log n

] +O(
WB

√
log 1

δ

ϵn
5
2

)

≤ O(W 2B(

√
θ log 1

δ

nϵ
+

1√
n
)).

Thus, by Lemma 4 we have

E[LP ](wk)− LP(w
∗) ≤ 2G(ELℓP(w)− LℓP(w∗))

≤ O(GW 2B(

√
θ log 1

δ

nϵ
+

1√
n
) +

GB2

β
).

Take β = O(
√
nB
W 2 ) we can get the result.

Proof of Theorem 4. The proof has the same idea of the proof in Theorem 2. And here we use the proof of Theorem 3
instead of Theorem 1. For simplicity we omit it here.

Proof of Theorem 5. First we will show the (ϵ, δ)-DP guarantee. Similar to the proof of Theorem 2 we know that when
k = O( logn/δα2 ) with some α ≤ 1 we have with probability at least 1− δ

2 , ∥Φxi∥2 ≤ (1 + α)∥xi∥2 ≤ 2 and ∥Φw∗∥2 ≤ 2W .
Under this event we can easily calculate the ℓ2-norm sensitivity of 1

n

∑n
i=1(max{0, ⟨w̃t,Φxi⟩} − yi)Φxi, which is 4(4W+B)

n .
Thus the line 2-4 is (ϵ, δ2 )-DP and the whole algorithm is (ϵ, δ)-DP.

Next we will show the utility, note that line 2-4 is equivalent to using the projected gradient descent to Lℓ(w; D̃) with
ℓ(w;x, y) =

∫ ⟨w,x⟩
0

(σ(z)− y)dz. Then denote P ′ = ΦP and w̃ =
∑T

t=1 w̃t

T we have

ELℓP(w̄)− LℓP(w∗) = [ELℓP′(w̃))− ELℓ(Φw∗, D̃)] + [ELℓ(Φw∗, D̃)]− LℓP(w∗)]

≤ [LℓP′(w̃))− min
w∈W̃

LℓP′(w)] + [LℓP′(w̃T+1))− LℓP(w∗)].

For the second term due to Lemma 3 we known w∗ is the global minimizer of LℓP(w) and thus ∇LℓP(w∗) = 0, moreover we
can see ℓ is 1-smooth, thus we have

ELℓ(Φw∗, D̃)− LℓP(w∗) ≤ 1

2
E[|⟨Φw∗,Φx⟩ − ⟨w∗, x⟩|2]

≤ O(Wα2) = O(
W log n/δ

m
).

For the first term, we have

ELℓP′(w̃))− ELℓ(Φw∗, D̃) = ELℓP′(w̃)− ELℓP′(Φw∗) ≤ ELℓP′(w̃))− min
w∈W̃

LℓP′(w)

= ELℓP′(w̃))− ELℓ((w̃, D̃) + ELℓ((w̃, D̃)− ELℓ((w̃∗, D̃)

Since ℓ(w; Φxi, yi) is a 2(4W +B)-Lipschitz and 4-smooth function and the algorithm is just the PGD for the empirical risk
function. The first term, which is the generalization error is bounded by Lipschitz times the stability i.e., O((W + B)2 ηTn ).
The second term is bounded by the excess empirical risk, we have

E[∥w̃t+1 − w̃∗∥22] ≤ E∥w̃t − w̃∗ − η(∇Lℓ(w̃t, D̃) + ηt)∥22
≤ E∥w̃t − w̃∗∥22 + η2∥∇Lℓ(w̃t, D̃)∥22 + η2σ2m− 2η(Lℓ(w̃t, D̃)− Lℓ(w̃∗, D̃))

≤ E∥w̃t − w̃∗∥22 + 4η2(4W +B)2 + η2σ2m− 2η(Lℓ(w̃t, D̃)− Lℓ(w̃∗, D̃))



Thus, taking the sum for t = 1, · · · , T we have

Lℓ(w̃, D̃)− Lℓ(w̃∗, D̃) ≤ E∥w̃1 − w̃∗∥22
2ηT

+ 4η(4W +B)2 +O(
η(W +B)2mT log(1/δ)

n2ϵ2
).

In total we have

ELℓP′(w̃))− ELℓ(Φw∗, D̃) ≤ O(
W 2

ηT
+
η(W +B)2Tm log 1

δ

n2ϵ2
+ (W +B)2

ηGT

n
+ η(W +B)2).

Note that the previous bound only holds when ∥Φxi∥ ≤ (1 +
log
√
n/δ

m ) which holds with probability at least 1− δ. Thus we
can use the same argument as in the Proof of Lemma 8 in [16] to transform the above result to a result of the expectation
w.r.t Φ with an additional logarithmic factor. Thus we have

ELℓP(wT+1)− LℓP(w∗) ≤ Õ(
W 2

ηT
+
η(W +B)2Tm log 1

δ

n2ϵ2
+ (W +B)2

ηT

n
+
W log n/δ

m
+ η(W +B)2).

Thus, when take η = W
√
T max{(W+B),

(W+B)
√

mT log(1/δ)

nϵ }
≤ W

(W+B)
√
T
≤ 1

2 and T = O(min{n, n2ϵ2

m log 1/δ}) we have

ELℓP(wT+1)− LℓP(w∗) ≤ O(
W (W +B)√

n
+
W (W +B)

√
m log 1/δ

nϵ
+
W log n/δ

m
).

Take m = O((nϵ)
2
3 log n/δ) we can get the result.

Proof of Theorem 6. We first show the proof of privacy. Note that since each iteration we use one data Di. Thus, it is
sufficient to show the algorithm is (ϵ, δ)-DP in the i-th iteration with fixed wi−1. This is true since the ℓ2-norm sensitivity of
∇Lℓ(wi−1;Di) is

√
d∥wi−1∥2+B

m based on our assumption.
Next we will focus on the utility. By the concentration property of Gaussian distribution we know that with probability

at least 1 − ζ, we have ∥ζi−1∥22 ≤ O(d
(
√
d∥wi−1∥2+B)2 log 1

ζ log 1
δ

m2ϵ2 ). Thus, with probability at least 1 − ζ, ∥ζi−1∥22 ≤
O(d

(
√
d∥wi−1∥2+B)2 log T

ζ log 1
δ

m2ϵ2 ) for all i = 1, · · · , T . Below we will always assume this event holds.
Before our proof we first recall the following lemmas:

Lemma 11 (Corollary 2.4 of [26]). If PX is isotropic, then for any vector w, the distance between χσw

P and χP is bounded
by

√
LP(w), i.e., ∥χσw

P − χP∥2 ≤
√
LP(w).

Lemma 12 (Lemma 4.2 in [26]). Under Assumption 2 , we have EP [(σ(⟨w, x⟩)− σ(⟨w∗, x⟩))2] ≤ µ(∥χσw

P − χ
σw∗
P ∥22) with

some constant µ.

Thus in total we have

EP [(σ(⟨w, x⟩)− σ(⟨w∗, x⟩))2] ≤ µ(∥χσw

P − χ
σw∗
P ∥22)

≤ 2µ(∥χσw

P − χP∥22 + ∥χ
σw∗
P − χP∥22)

≤ 2µLP(w
∗) + 2µ∥∇LℓP(w)∥2. (11)

On the other side by the triangle inequality we have

LP(w) ≤ 2LP(w
∗) + 2EP [(σ(⟨w, x⟩)− σ(⟨w∗, x⟩))2].

In total we have
LP(w) ≤ 2(1 + 2µ)LP(w

∗) + 4µ∥∇LℓP(w)∥2.

In the following we will bound the term of ∥∇LℓP(wT )∥2 in Algorithm 8. We recall the following lemmas in [26].

Lemma 13. Consider a ball B(0, r) with radius r, under Assumption 2, if σ is the sigmod link function. Then as long as

n ≥ Ω̃(
d

α2
log4

d

ζ
(r + 1)2),

we have for fixed w ∈ B(0, r)

∥ 1
n

n∑
i=1

(σ(⟨w, xi⟩)− yi)xi∥2 ≤ α.



Lemma 14. As long as α ≤ ∥w∗
ℓ ∥2, ζ ≥ exp(−O(

√
d)) and

n ≥ Ω̃(
d

µ2
log
∥w∗

ℓ ∥2 + 1

µζ
),

with probability at least 1− ζ we have for all w such that α
3 ≤ ∥w − w

∗
ℓ ∥2 ≤ 2∥w∗

ℓ ∥2,

⟨∇Lℓ(w;D)−∇Lℓ(w∗
ℓ ;D), w − w∗

ℓ ⟩ ≥ τ∥w − w∗
ℓ ∥22 + β∥∇Lℓ(w;D)−∇Lℓ(w∗

ℓ ;D)∥22

with τ = µ
3 and β = 1

8 .

Now lets back to our proof, we will first show that ∥wi − w∗
ℓ ∥2 ≤ 2∥w∗

ℓ ∥2 for all i = 0, · · · , T when n is large enough:

Lemma 15. Suppose the event of ∥ζi−1∥22 ≤ O(
(
√
d∥wi−1∥2+B)2 log T

ζ log 1
δ

m2ϵ2 ) for all i = 1, · · · , T holds, then we have ∥wi −
w∗
ℓ ∥2 ≤ 2∥w∗

ℓ ∥2 for all i = 0, · · · , T when m ≥ Ω̃(
√

1
τ (4η +

1
τ )

(
√
d∥w∗

ℓ ∥2+B)
√

log 1/δ log 1/ζ

ϵα )

Proof. We will show it by using induction. This is true for i = 0 since w0 = 0. Suppose this is true for some i− 1, then our
goal is to show ∥wi − w∗∥2 ≤ 2∥w∗

ℓ ∥2. We consider two cases.
The first case is 2∥w∗

ℓ ∥2 ≥ ∥wi−1 − w∗
ℓ ∥ ≥ α

3 . Then we have

∥wi − w∗
ℓ ∥22 = ∥wi−1 − w∗

ℓ ∥22 − η⟨∇Lℓ(wi−1;Di) + ζi−1, wi−1 − w∗
ℓ ⟩+ η2∥∇Lℓ(wi−1;Di) + ζi−1∥22

= ∥wi−1 − w∗
ℓ ∥22 − η⟨∇Lℓ(wi−1;Di)−∇Lℓ(w∗

ℓ ;Di), wi−1 − w∗
ℓ ⟩

+ η2∥∇Lℓ(wi−1;Di) + ζi−1∥22 − η⟨∇Lℓ(w∗
ℓ ;Di) + ζi−1, wi−1 − w∗

ℓ ⟩
≤ (1− τη)∥wi−1 − w∗

ℓ ∥22 − ηβ∥∇Lℓ(wi−1;Di)−∇Lℓ(w∗
ℓ ;Di)∥22 + 2η2∥∇Lℓ(wi−1;Di)−∇Lℓ(w∗

ℓ ;Di)∥22
+ 2η2∥∇Lℓ(w∗

ℓ ;Di) + ζi−1∥22 − η⟨∇Lℓ(w∗
ℓ ;Di) + ζi−1, wi−1 − w∗

ℓ ⟩
≤ (1− τη)∥wi−1 − w∗

ℓ ∥22 − η(β − 2η)∥∇Lℓ(wi−1;Di)−∇Lℓ(w∗
ℓ ;Di)∥22 + 4η2∥∇Lℓ(w∗

ℓ ;Di)∥22 + 4η2∥ζi−1∥22
+
τη

2
∥wi−1 − w∗

ℓ ∥22 +
η

τ
∥∇Lℓ(w∗

ℓ ;Di)∥22 +
η

τ
∥ζi−1∥22

≤ (1− τη

2
)∥wi−1 − w∗

ℓ ∥22 + η(4η +
1

τ
)∥∇Lℓ(w∗

ℓ ;Di)∥22 + η(4η +
1

τ
)∥ζi−1∥22 (12)

= (1− τη

2
)∥wi−1 − w∗

ℓ ∥22 + η(4η +
1

τ
)∥∇Lℓ(w∗

ℓ ;Di)∥22 + Õ(dη(4η +
1

τ
)
(
√
d∥wi−1∥2 +B)2 log(1/δ) log 1/ζ

m2ϵ2
)

≤ (1− τη

2
+ Õ(η(4η +

1

τ
)
d2 log(1/δ) log 1/ζ

m2ϵ2
))∥wi−1 − w∗

ℓ ∥22 + η(4η +
1

τ
)∥∇Lℓ(w∗

ℓ ;Di)∥22

+ Õ(dη(4η +
1

τ
)
(
√
d∥w∗

ℓ ∥2 +B)2 log(1/δ) log 1/ζ

m2ϵ2
), (13)

where the first inequality is due to Lemma 14. Thus, we can see that when

m ≥ Ω̃(

√
η

τ
+

1

τ2
d
√

log 1/δ log 1/ζ

ϵ
),

take α =
√

τ
9(4τβ+1)α

2 in Lemma 13 and when m ≥ Ω̃(
√
d 1
τ (4η +

1
τ )

(
√
d∥w∗

ℓ ∥2+B)
√

log 1/δ log 1/ζ

ϵα ). Then we have

∥wi − w∗
ℓ ∥22 ≤ (1− τη

4
)∥wi−1 − w∗

ℓ ∥22 +
2α2

9
≤ 4∥w∗

ℓ ∥22.

We then consider case 2 where ∥wi−1 − w∗
ℓ ∥2 ≤ α

3 . Then we have

∥wi − w∗
ℓ ∥2 = ∥wi−1 − w∗

ℓ − η(∇Lℓ(wi−1;Di) + ζi−1∥2
≤ ∥wi−1 − w∗

ℓ − η(∇Lℓ(wi−1;Di)−∇Lℓ(w∗
ℓ ;Di)∥2 + η∥ζi−1∥2 + η∥∇Lℓ(w∗

ℓ ;Di)∥2
≤ ∥wi−1 − w∗

ℓ ∥2 + η∥ζi−1∥2 + η∥∇Lℓ(w∗
ℓ ;Di)∥2 ≤ α ≤ ∥w∗

ℓ ∥2,

where the second inequality is due to the convexity of the surrogate loss ℓ such that ⟨∇Lℓ(wi−1;Di)−∇Lℓ(w∗
ℓ ;Di), wi−1−

w∗
ℓ ⟩ ≥ 0. Thus we can see in both cases we have ∥wi − w∗

ℓ ∥2 ≤ 2∥w∗
ℓ ∥2. Thus we complete the proof.

Next we will proof the main theorem.



Suppose there exists a t̃ such that for i ≤ t̃, we have ∥wi−1 −w∗
ℓ ∥2 ≥ α

3 . Now consider in the i-th iteration where i ≤ t̃, if
∥wi−1 − w∗

ℓ ∥2 ≤ ∥w∗
ℓ ∥2. Then

∥wi − w∗
ℓ ∥22 = ∥wi−1 − w∗

ℓ ∥22 − η⟨∇Lℓ(wi−1;Di) + ζi−1, wi−1 − w∗
ℓ ⟩+ η2∥∇Lℓ(wi−1;Di) + ζi−1∥22

= ∥wi−1 − w∗
ℓ ∥22 − η⟨∇Lℓ(wi−1;Di)−∇Lℓ(w∗

ℓ ;D), wi−1 − w∗
ℓ ⟩

+ η2∥∇Lℓ(wi−1;Di) + ζi−1∥22 − η⟨∇Lℓ(w∗
ℓ ;Di) + ζi−1, wi−1 − w∗

ℓ ⟩
≤ (1− τη)∥wi−1 − w∗

ℓ ∥22 − ηβ∥∇Lℓ(wi−1;Di)−∇Lℓ(w∗
ℓ ;Di)∥22 + 2η2∥∇Lℓ(wi−1;Di)−∇Lℓ(w∗

ℓ ;Di)∥22
+ 2η2∥∇Lℓ(w∗

ℓ ;Di) + ζi−1∥22 − η⟨∇Lℓ(w∗
ℓ ;Di) + ζi−1, wi−1 − w∗

ℓ ⟩
≤ (1− τη)∥wi−1 − w∗

ℓ ∥22 − η(β − 2η)∥∇Lℓ(wi−1;Di)−∇Lℓ(w∗
ℓ ;Di)∥22 + 4η2∥∇Lℓ(w∗

ℓ ;Di)∥22 + 4η2∥ζi−1∥22
+
τη

2
∥wi−1 − w∗

ℓ ∥22 +
η

τ
∥∇Lℓ(w∗

ℓ ;Di)∥22 +
η

τ
∥ζi−1∥22

≤ (1− τη

2
)∥wi−1 − w∗

ℓ ∥22 + η(4η +
1

τ
)∥∇Lℓ(w∗

ℓ ;Di)∥22 + η(4η +
1

τ
)∥ζi−1∥22,

where the first inequality is due to Lemma 14. Since we have ∥wi−1 −w∗∥2 ≥ α
3 , and take α =

√
τ2

9(4τβ+1)α
2 in Lemma 13

and since m ≥ Ω̃(
√
d 1
τ (4η +

1
τ )

(B+
√
d∥w∗

ℓ ∥2)
√

log 1/ζ log 1/δ

ϵα ) and ∥wi−1∥2 ≤ 3∥w∗
ℓ ∥2, we have for i ≤ t̃

∥wi − w∗
ℓ ∥22 ≤ (1− τη

2
)i∥w0 − w∗

ℓ ∥22 +
1

τ
(4η +

1

τ
)

τ2

9(4τβ + 1)
α2 +

α2

9

≤ ∥w∗
ℓ ∥22 +

2α2

9
≤ 4∥w∗

ℓ ∥22.

Thus, we can see that as long as for i ≤ t̃, ∥wi − w∗∥2 ≥ α
3 and ∥w0 − w∗

ℓ ∥ ≤ ∥w∗
ℓ ∥2 (this is true since w0 = 0) we always

have ∥wi − w∗
ℓ ∥2 ≤ 2∥w∗

ℓ ∥2. Thus, we can always use Lemma 14.
Now we consider several cases:
Case 1: If for all i ≤ T , ∥wi − w∗

ℓ ∥2 ≥ α
3 . Then by the above inequality we have

∥wT − w∗
ℓ ∥22 ≤ (1− τη

2
)T ∥w0 − w∗

ℓ ∥22 +
1

τ
(4η +

1

τ
)

τ2

9(4τβ + 1)
α2 +

α2

9
≤ (1− τη

2
)T ∥w∗

ℓ ∥22 +
2α2

9

Thus, take T = O(
log(α/∥w∗

ℓ ∥2)

log(1− τη)
2

) = O( 1
τη log(∥w

∗
ℓ ∥2) we have

∥wT − w∗∥22 ≤
2α2

9
+

2α2

9
≤ 4α2

9
. (14)

That is ∥wT − w∗∥2 ≤ 2α
3 .

Case 2: If Case 1 does not hold, then if there exist a t̃ < T (we assume t̃ is the largest one) such that when i = t̃ we have
∥wi − w∗

ℓ ∥2 ≤ α
3 and ∥wi − w∗

ℓ ∥2 ≥ α
3 for T ≥ i ≥ t̃+ 1. Then

∥wt̃+1 − w∗
ℓ ∥2 = ∥wt̃ − w∗

ℓ − η(∇Lℓ(wt̃;Di) + ζt̃)∥2
≤ ∥wt̃ − w∗

ℓ − η(∇Lℓ(wt̃;Di)−∇Lℓ(w∗
ℓ ;Di))∥2 + η∥ζt̃∥2 + η∥∇Lℓ(w∗

ℓ ;Di)∥2
≤ ∥wt̃ − w∗

ℓ ∥2 + η∥ζt̃∥2 + η∥∇Lℓ(w∗
ℓ ;Di)∥2 ≤

α

3
+
α

3
≤ 2∥w∗

ℓ ∥2,

where the second inequality is due to the convexity of the surrogate loss ℓ such that ⟨∇Lℓ(wt̃;Di)−∇Lℓ(w∗
ℓ ;Di), wt̃−w∗

ℓ ⟩ ≥ 0.
Thus, we can use the same argument as Case 1 and show that

∥wT − w∗
ℓ ∥22 ≤ (1− ητ

2
)T−t̃−1∥wt̃+1 − w∗

ℓ ∥22 +
2α2

9
≤ 2

3
α2. (15)

Case 3 If Case 1 and Case 2 do not hold, then that is ∥wT − w∗∥2 ≤ α
3 .

Thus, in total we must have ∥wT − w∗
ℓ ∥2 ≤ α with probability at least 1− 3ζ. Note that

∥∇LℓP(wT )∥2 = ∥∇LℓP(wT )−∇LℓP(w∗
ℓ )∥2 ≤ ∥wT − w∗

ℓ ∥2 ≤ α. Thus

LP(w) ≤ 2(1 + 2µ)LP(w
∗) + 4µα.

Take α = α
4µ we can get the result.

Proof of Lemma 7. We denote

ℓ̃(w;x, y) =

∫ ⟨w,ψ(x)⟩+ϕ(x)

0

(σ(z)− y)dz.



For any fixed x we have

Ey[ℓ̃(w;x, y)]− Ey[ℓ̃(w∗;x, y)] = Ey
∫ ⟨w,ψ(x)⟩ϕ(x)

⟨w∗,ψ(x)⟩+ϕ(x)
(σ(z)− y)dz

=

∫ ⟨w,ψ(x)⟩ϕ(x)

⟨w∗,ψ(x)⟩+ϕ(x)
(σ(z)− Eyy)dz

=

∫ ⟨w,ψ(x)⟩ϕ(x)

⟨w∗,ψ(x)⟩+ϕ(x)
(σ(z)− σ(⟨w∗, ψ(x)⟩+ ϕ(x))))dz

=

∫ ⟨w,ψ(x)⟩+ϕ(x)

⟨w∗,ψ(x)⟩+ϕ(x)

σ′(z)(σ(z)− σ(⟨w∗, ψ(x)⟩+ ϕ(x)))

σ′(z)
dz

≥ 1

2G
(σ(⟨w,ψ(x)⟩+ ϕ(x))− σ(⟨w∗, ψ(x)⟩) + ϕ(x))2

≥ 1

2G
[
(σ(⟨w,ψ(x)⟩)− σ(⟨w∗, ψ(x)⟩+ ψ(x)))2

2
− (σ(⟨w, x⟩+ ψ(x))− σ(⟨w, x⟩))2]

≥ 1

2G
[
(σ(⟨w,ψ(x)⟩)− σ(⟨w∗, ψ(x)⟩+ ψ(x)))2

2
−G2M2].

On the other side we have |ℓ̃(w;x, y)−ℓ(w;x, y)| = |
∫ ⟨w,ψ(x)⟩+ϕ(x)
⟨w,ψ(x)⟩ (σ(z)−y)dz| ≤ |ϕ(x)| ≤M . In total take the expectation

w.r.t x we have
LP(w)− LP(w

∗) ≤ 4G(LℓP(w)− LℓP(w∗)) + 2G2M2 + 4GM.

Proof of Theorem 7. It is sufficient for us to only consider the term of LℓP(w)−LℓP(w∗). We can just use Theorem 1 to get

the bound of O(

√
θ log 1

δ

nϵ + 1√
n
). For the other term, we can following the proof of Theorem 2. The only difference is that

here we do not have (9) as w∗ is not the global minimizer of LℓP(w). Thus, by the Lispchitz condition we have

EΦ,D̃L
ℓ(Φw∗, D̃)− LℓP(w∗) = EΦ,(xi,yi)∼P [g

yi(⟨Φw∗,Φxi⟩)− gyi(⟨w∗, xi⟩)]

≤ 2EΦ,x|⟨Φw∗,Φx⟩ − ⟨w∗, x⟩| = O(W
log n/δ√

m
).

Thus, similar to the proof of Theorem 2 in total we have

LℓP(w)− LℓP(w∗) ≤ Õ(W
1√
m

+W (

√
m log 1

δ

nϵ
+

1√
n
)).

Take m = O(log(n/δ)nϵ) we can get the result.

Proof of Theorem 8 and 9 . We first recall the following two lemmas that the neural networks we considered can be
uniformly approximated.

Lemma 16 ( [20]). For N2 with the sigmoid function σ1 and G-Lipschitz function σ2, there exists a kernel K with K(x, x′) ≤ 1

and feature map ψ(x) ∈ RDm (Dm = 1 + d + · · · + dm and m = O(log( 1
α0

))) such that N2 is (
√
kα0, (

√
k

α0
)C)-uniformly

approximated by kernel K with some constant C > 0 for any α0.

Lemma 17 ( [20]). For N2 with the ReLU function σ1 and G-Lipschitz function σ2, there exists a kernel K with K(x, x′) ≤ 1

and feature map ψ(x) ∈ RDm (Dm = 1+d+· · ·+dm and m = O( 1
α0

) such that N2 is (
√
kα0, 2

C
√

k
α0 )-uniformly approximated

by kernel K with some constant C > 0 for any α0.

Thus combining with the previous two lemmas with α0 = α
G
√
k

and Corollary 1 we have the proof.

APPENDIX B
OMITTED PROOFS IN SECTION VI

In this section we provide the proof of the theorem by applying the following technical lemmas. To begin with, we introduce
some extra notations. Following [42], for a parameter collection W and i ∈ [n], we denote the l-th hidden layer output of the
network as

hi,l =

{
σ(Wlhi,l−1) if l ∈ [L− 1]

xi if l = 0



We also define the binary diagonal matrices

Di,l = diag(I{(Wlhi,l)1 > 0}, ..., I{(Wlhi,l)m > 0}), l ∈ [L− 1]

For i ∈ [n] and l ∈ [L− 1], for the collection of initialization parameters W(0), we use h
(0)
i,l ,D

(0)
i,l to denote the initial hidden

layer outputs and binary diagonal matrices. We introduce the following matrix product notation used in the previous related
work [32], [43], [44]:

l2∏
r=l1

Mr :=

{
Ml2Ml2−1...Ml1 if l1 ≤ l2
I otherwise

With this notation, we rewrite the neural network in the matrix representation from:

f(W,xi) =

{√
m ·WL(

∏L−1
r=l+1 Di,rWr)hi,l l ∈ [L− 1]

√
m ·WLh

T
i,l−1 l = L

Under this notation, one can calculate the gradient of f(W,xi) as follows:

∇Wl
f(W,xi) =

{√
m · [WL(

∏L−1
r=l+1 Di,rWr)Di,l]

⊤hi,l−1 l ∈ [L− 1]
√
m · hTi,l l = L

(16)

The following lemma shows the error between neural network function and its linearization under NTKF for all W ∈
B(W(0), ω) with some small ω.

Lemma 18 (locally linearization of neural network, Lemma 4.1 in [32]). There exists an absolute constant κ such that, with
probability at least 1 − O(nL2) exp[−Ω(mω2/3L] over the randomness of W(0), for all i ∈ [n] and W ∈ B(W(0), ω) with
ω ≤ κL−6[log(m)]−3/2

|f(W;xi)− fntk(W;xi)| ≤ O
(
ω4/3L3

√
m log(m)

)
Given the lemma 18, since the loss function is convex we can show the objective function is almost convex near the

initialization. This implies the dynamics of the DP-SGD algorithm given in Algorithm 10 is similar to the dynamics of convex
optimization.

Lemma 19 (locally almost convexity). There exists an absolute constant κ such that, with probability at least 1 −
O(nL2) exp[−Ω(mω2/3L] over the randomness of W(0), for all i ∈ [n] and W′,W ∈ B(W(0), ω), any ∆ > 0, with
ω ≤ κL−6m−3/8[log(m)]−3/2∆3/4 it holds uniformly

Li(W
′) ≥ Li(W) + ⟨∇Li(W),W′ −W⟩ −∆

Proof of Lemma 19. By the convexity of loss function ℓ we have

Li(W
′)− Li(W) = ℓ(f(W′;xi), yi)− ℓ(f(W;xi), yi)

≥ ℓ′(f(W;xi), yi) · (f(W′;xi)− f(W;xi)).

By the triangular inequality

|ℓ′(f(W;xi), yi) · (f(W′;xi)− f(W;xi))| ≥ |ℓ′(f(W;xi), yi) · ⟨∇f(W;xi),W
′ −W⟩|

− |ℓ′(f(W;xi), yi) · (f(W′;xi)− f(W;xi)− ⟨∇f(W;xi),W
′ −W⟩)|

where we could decompose the last term in the right side of inequality into |ℓ′(f(W;xi), yi)| · ([f(W′;xi)− fntk(W′;xi)]−
[f(W;xi)− fntk(W;xi)]). Now we can apply the linearization approximation Lemma 18 and ℓ(·) is S-lipschitz with respect
to W to obtain the following inequality

Li(W
′)− Li(W) ≥ ⟨∇Li(W),W′ −W⟩ −O(Sω4/3L3

√
m log(m))

≥ ⟨∇Li(W),W′ −W⟩ −∆

The last inequality holds if ω ≤ κL−6m−3/8[log(m)]−3/2∆3/4 for some constant κ.

With the lemma 19, it is clear the loss of neural network is almost convex. This inspired us to analysis the dynamics of the
DP-SGD algorithm 10. By carefully select learning rate and number of iteration, the DP-SGD algorithm is similar to the
noised SGD convex optimization. Algorithm 5 is similar to the dynamics of convex optimization. In the following we will
show the loss function is locally Lipschitz.



Lemma 20 (Lemma 7.1 in Allen-Zhu [42]). If ϵ ∈ (0, 1], with probability at least 1−O(nl) · eΩ(mϵ2/L) over the randomness
of W(0), we have

∀i ∈ [n], l ∈ [L] : ||hi,l|| ∈ [1− ϵ, 1 + ϵ] (17)

Lemma 21 (Lemma 8.2 in Allen-Zhu [42]). Suppose ω ≤ 1
CL9/2 log3m

for some sufficiently large constant C > 1. With

probability at least 1− e−Ω(mω2/3L), for every W ∈ B(W(0), ω),

||hi,j − h(0)i,j || ≤ O(ωL5/2
√
logm) (18)

Lemma 22 (Locally Bounded Gradient). There exists an absolute constant κ such that, with probability at least
1 − O(nL) exp[−Ω(mω2/3L] over the randomness of W(0), for all i ∈ [n], l ∈ [L] and W ∈ B(W(0), ω), with
ω = R√

m
≤ κL−6[logm]−3

1) ||∇Wl
f(W;xi)||F = O(

√
m)

2) ||∇Wl
Li(W)||F = O(S

√
m)

Proof of Lemma 22. Observing that the loss function ℓ(·, yi) is assumed to be S-lipschitz for any yi, it is sufficient to show
that the gradient of fntk(W, x) is bound with high probability.
By Lemma 20, with probability at least 1 − O(nL) · exp[−Ω(m/L)], ||h0

i,l||2 ∈ [3/4, 5/4] for all i ∈ [n] and l ∈ [L − 1].
Moreover, by Lemma 21 and the fact that σ(·) is of 1-lipschitz continuity, with probability 1 − O(nL) · exp[−Ω(mω2/3L],
||hi,l − h

(0)
i,l ||2 ≤ O(ωL5/2

√
logm). Therefore, by the setting of neighborhood ω = R ·m−1/2 and the assumption of m, we

have ||hi,l||2 ∈ [1/2, 3/2] for all i ∈ [n] and l ∈ [L− 1]. Note by Lemma 19 that this implicitly indicates that

R√
m
≤ κL−6m−3/8[log(m)]−3/2∆3/4 =⇒ m

1
8 ≥ Ω̃(RS

3
4L

9
4∆

3
4 ). (19)

The above statement tells that the output of arbitrary hidden-layer hi,l lies in a small region, therefore plugging in (16) for
∇Wl

f(W;xi) we can get the desired result.

s

Lemma 23. When M ≥ Ω(log T
γ ) we have with probability at least 1 − γ for all t ∈ [T ], |Bt| ≥ C1M for some constant

C1 > 0

Proof. By the subsampling procedure we can easily see E[|Bt|] = qn = M . Thus, by the Multiplicative Chernoff bound we
can see for all t ∈ [T ]

P(||Bt| −M | ≥ γM) ≤ 2 exp(−γ
2M

3
)

Thus, we have with probability at least 1 − γ we have |Bt| ≥ (1 −
√

3 log T
γ√

M
)M . Thus when M ≥ Ω(log T

γ ) we have the
result.

Lemma 24. Gaussian vector norm tail bound Let X ∼ N(µ, σ2I) where µ ∈ Rn and σ ∈ R. For any t > 0, with probability
at most 1− 2 exp(− t

2nσ2 )

||X− µ||F ≤ t

Proof of the Lemma 24. Let Y ∼ N(0, I), then ||X − µ||F =d ||σY||F . For all t > 0 and s > 0, based on the inequality
from Lemma 4 in [45], we have

P (||σY||F > t) ≤ P (||σY||1 > t)

≤ e−st
n∏
i=1

E[exp(tσ|Yi|)]

≤ 2 exp(s2nσ/2− st)
≤ min

s
2 exp(s2nσ/2− st)

≤ 2 exp(
t2

2nσ
)



Lemma 25 (Dynamically Cumulative Loss). If Lemma 23 holds, C ≤ O(min{SL
√
m,R}) and n ≥

Ω̃(
C(

√
Lm+

√
md)
√
T log(1/γ) log(1/δ)

Rϵ ), then with probability at least 1−O(nL2) exp[−Ω(mω2/3L]− γ over the randomness of

W(0) and the noise, for all t ∈ [T ] and W∗ ∈ B(W(0), R/
√
m), any ∆ > 0, with set size ηT = Θ( SL2R2

κC
√
m∆

),∆ = O(SL
3
2R√
T

)

with m ≥ O(L56R24∆−14S−8C−8[log(m)]12) it holds uniformly

T∑
t=1

Lt(W
(t))− Li(W∗) ≤ SLη

√
m

2κC

T∑
t=1

||Gt||2F + 3T∆

Proof of Lemma 25. First we show that following the DP-SGD update rule, the parameters would be restricted within a small
region near to initialization by choosing some artificial parameters. By Lemma 18, 19, 22 there exists some small enough
positive constant C1, suppose ω = C1 · L−6m−3/8[log(m)]−3/2∆3/4 ≥ R√

m
such that the conditions in the above mentioned

three lemma hold. Recall the update rule is

W(t+1) ← ProjW(W(t) − η · ( 1

|Bt|
∑

(x
(t)
j ,y

(t)
j )∈Bt

g̃t(x
(t)
j ) +Gt)).

Assume the sample size n ≥ Ω̃(
C(

√
Lm+

√
md)
√
T log(1/γ) log(1/δ)

Rϵ ) , we can have the following inequality with probability at
least 1− γ

||W(T )
l −W

(0)
l ||F ≤

T∑
t=1

||W(t)
l −W

(t−1)
l ||F

≤ η
T∑
t=1

|| 1

|Bt|
∑

(x
(t)
j ,y

(t)
j )∈Bt

g̃t(x
(t)
j ) +Gt||F

≤ 2TηR

≤ O(
SL2R3

∆C
√
m
)

≤ ω

The first inequality follows by the triangle inequality. The second inequality could be seen from the update rule. The third
inequality holds since by Lemma 23 and Gaussian tail bound we have with probability at least 1 − γ, for all t ∈ [T ]

both |Bt| ≥ Ω(M) and ∥Gt∥F ≤ Õ(
M(

√
Lm+

√
md)C

√
T log 1/δ log 2T/γ

n|Bt|ϵ ) holds, which indicate
∑T
t=1 ||Gt||F ≤ TR if n ≥

Ω̃(
C(

√
Lm+

√
md)
√
T log(2/γ) log(1/δ)

Rϵ ), and the assumption that C ≤ R. The fourth inequality holds due to that

Tη ≤ O(
SL2R2

∆C
√
m
). (20)

The last inequality holds, if m ≥ Ω
(
S−8C−8L56R24∆−14[log(m)]12

)
. Thus we have Wt ∈ B(W(0), w) with high probability

for all t ∈ [T ]. Suppose W∗ ∈ B(W(0), ω∗ = R/
√
m). Following above setting, Lemma 18, 19, 22 hold. Then for any positive



constant ∆ > 0 the following inequality holds.

Lt(W
(t))− Lt(W∗) ≤ ⟨∇WLt(W

(t)),W(t) −W∗⟩+∆

=
1

η
max(1,

||gt(xt)||F
C

)⟨ηg̃t(xt),W(t) −W∗⟩+∆

=
1

2η
max(1,

||gt(xt)||F
C

)(η2C2 + ||W(t) −W∗||2F

− ||W(t) −W∗ − ηg̃t(xt)||2F ) + ∆

≤ max(1,
||gt(xt)||F

C
){ηC

2

2
+

1

2η
[||W(i) −W∗||2F

− ||W(i+1) −W∗||2F ] +
η

2
||Gi||2F

+
η

2M

M∑
j=1

||g̃t(xj)− g̃t(xt)||2F }+∆

≤ max(1,
||gt(xt)||F

C
){3ηC

2

2
+

1

η
[||W(t) −W∗||2F

− ||W(t+1) −W∗||2F ] +
η

2
||Gt||2F }+∆

The first inequality follows by lemma 19. The second equality is a direct application from the definition of inner product in
metric space. The third equality holds because the connection between inner product and norm in metric space.
Thus by telescope summation and simply removing the negative term, the cumulative loss could be bounded by any loss near
the initialization parameters

T∑
t=1

Lt(W
(t)) ≤

T∑
t=1

Lt(W
∗) + max

t∈[T ]
(1,
||gt(xt)||F

C
){3TηC

2

2
+

1

η

T∑
t=1

[||W(t) −W∗||2F

− ||W(t+1) −W∗||2F ] +
η

2

T∑
t=1

||Gt||2F }+ T∆

=

T∑
t=1

Lt(W
∗) + max

t∈[T ]
(1,
||gt(xt)||F

C
){3TηC

2

2
+

1

η
[||W(0) −W∗||2F

− ||W(T ) −W∗||2F ] +
η

2

T∑
t=1

||Gt||2F }+ T∆

≤
T∑
t=1

Li(W
∗) +O(

SL
√
m

C
{3TηC

2

2
+
LR2

2ηm
+
η

2

T∑
t=1

||Gt||2F }+ T∆)

≤
T∑
t=1

Lt(W
∗) +O(

SLη
√
m

C

T∑
t=1

||Gt||2F + T∆)

The third inequality holds because C ≤ maxt∈[T ] ||gt(xt)||F = O(SL
√
m). The last inequality hold if

SL
√
mTηC ≤ O(T∆) =⇒ η ≤ O(

∆κ

SL
√
mC

) (21)

SL2R2

Cη
√
m
≤ O(T∆) =⇒ ηT ≥ Ω(

SL2R2

κC
√
m∆

) (22)

Thus, combining (20), (21) and (22) we must have

(23)

∆ ≥ Ω(
SL

3
2R√
T

). (24)

Next we can verify the loss function Li(W
(i)) in the DP-SGD algorithm 10 is bounded from above. This could be seen

from the Gaussian tail bound for the initial state network, and the locally stability of the loss function.



Lemma 26 (Lemma 4.4 in [32]). With probability at least 1− ξ, for all i ∈ [n] with ω ≤ L log(nL/ξ), we have

||fW(0)(xi)||F ≤ O(
√
log(n/ξ))

Lemma 27 (Stability of the Loss function). There exists an absolute constant κ such that, with probability at least 1− ξ, for
all W ∈ B(W(0), R/

√
m), with m ≥ O(R−1L−3/2[log(nL/ξ)]3)

Li(W)− Li(W(0)) ≤ O(SLR)

Proof of the Lemma 27. Since ℓ(·) is an Lipschitz function and suppose Lemma22 condition holds, then with probability at
least 1−O(nL2) exp[−Ω(mω2/3L], the inequality below holds

Li(W)− Li(W(0)) ≤ S · ⟨f ′(W),W −W(0)⟩

≤ S ·
L∑
l=1

⟨∇Wl
f(W),W −W(0)⟩

≤ O(SLR)

The probability could be reduced to 1− ξ if m ≥ O(R−1L−3/2[log(nL/ξ)]3), we obtain the desired result.

Remark 7. Combine Lemma 26 and the Lemma 27, with probability at least 1− 2ξ, we immediately obtain the upper bound
for the empirical loss function, suppose ω = R/

√
m

Li(W) ≤ O(
√

log(2n/ξ) + SLR)

The probability could be reduced to 1− ξ by normalize the coefficients with some constants.

Proof of the Theorem 10 . By Lemma 25, 27, converting the condition of Lemma 25 with respect to m, with probability

at least 1− ξ − γ and there exists m ≥ Ω̃(L56R16∆−14S−2C−8[log(nL+ 1/ξ)]3), n ≥ Ω̃(
C(

√
Lm+

√
md)
√
T log(1/γ) log(1/δ)

Rϵ )
such that all lemmas hold, therefore we can apply the Azuma-Hoeffding inequality or so called online-to-batch technique to
get the expectation loss

1

T

T∑
t=1

LD(W
(t)) ≤ 1

T

T∑
t=1

Lt(W
(t)) + I ·

√
2 log(1/ξ)

T

≤ 1

T

T∑
t=1

Lt(W
∗) +O(

SLη
√
m

2CT

T∑
t=1

||Gt||2F +∆+ I ·
√

log(1/ξ)

T
)

The second inequality holds because of Lemma 25, and the upper bound of Loss function in remark 7 I = O(
√

log(2n/ξ) +
SLR√
m
) with probability 1− 3ξ. Thus under the previous lemma we have with probability 1− γ − 4ξ

1

T

T∑
t=1

LD(W
(t)) ≤ 1

T

T∑
t=1

Lt(W
∗) +O(

SL
√
mησ2(m2L+md)

C
+∆+ I ·

√
log(1/ξ)

T
)

≤ 1

T

T∑
t=1

Lt(W
∗) + Õ(

SL3/2R
√
T log(1/δ) log(1/γ)m2

n2ϵ2
(L+ d/m) +

SL
3
2R√
T

+ I

√
log(1/ξ)

T
)

where η = Θ( SL2R2

CT
√
m∆

),∆ = O(SL
3
2R√
T

), σ2 = Õ(TC
2 log(1/δ)
n2ϵ2 ) for some small enough constant κ ≥ 0. Since W∗ ∈

B(W(0), ω = R/
√
m), by Lemma 18, with probability at least 1− ξ

Li(W
∗) = ℓ(f(W∗;xi)

≤ ℓ(fntk(W∗;xi) +O(Sω4/3L3
√
m log(m))

= ℓ(fntk(W
∗;xi) +O(SR4/3L3

√
log(m)m−1/6)

≤ ℓ(fntk(W∗;xi) +O(
SLR√
T

)



The first inequality results from the S-Lipschitz continuity of ℓ(·) and Lemma18. And we can simplify the left term assuming
m ≥ Ω(log(m)3L12R2T 3). Since this holds for any W∗ ∈ B(W(0), R/

√
m) we can take the infimum over it, plugging into

the above bound

EASGD
[
1

T

T∑
i=1

LD(W
(i))] ≤ inf

f∈F(W(0),R/
√
m)
{ 1
T

T∑
i=1

ℓ(f(xi))}+ Õ(
SL3/2R

√
T log(1/δ)m2

n2ϵ2
(L+ d/m)

+
SL

3
2R√
T

+ I

√
log(1/ξ)

T
)

≤ inf
f∈F(W(0),R/

√
m)
{ 1
T

T∑
i=1

ℓ(f(xi))}+ SL
3
2R · Õ(

max(L, dm ) log(1/δ)m2
√
T

n2ϵ2

+
1√
T

+

√
log(1/ξ)

T
)

The inequalities hold by plug in the I and ignore the logarithmic term with respect to n for conciseness purpose.
The Lemma 19,22 reveal both the local landscape and training dynamic of DP-NN. Following the similar procedure, we can
rewrite the almost convexity in the summation form: LD(Ŵ) = LD(

1
T

∑T
i=1 W

(i)) ≤ 1
T

∑T
i=1 LD(W

(i)) + ∆, plugging in
yields the desired result. Finally, note that in the previous lemma we need

m ≥ O(L56R24∆−14S−8C−8[log(m)]12), (25)

plugging ∆ and by the non-negativity of the loss function we can get the result.
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